We report the observation of transverse-magnetic-polarized infrared absorption assigned to the s-p(z) intraband transition in Ge-doped GaN/AlN nanodisks (NDs) in self-assembled GaN nanowires (NWs). The s-p(z) absorption line experiences a blue shift with increasing ND Ge concentration and a red shift with increasing ND thickness. The experimental results in terms of interband and intraband spectroscopy are compared to theoretical calculations of the band diagram and electronic structure of GaN/AlN heterostructured NWs, accounting for their three-dimensional strain distribution and the presence of surface states. From the theoretical analysis, we conclude that the formation of an AlN shell during the heterostructure growth applies a uniaxial compressive strain which blue shifts the interband optical transitions but has little influence on the intraband transitions. The presence of surface states with density levels expected for m-GaN plane charge-deplete the base of the NWs but is insufficient to screen the polarization-induced internal electric field in the heterostructures. Simulations show that the free-carrier screening of the polarization-induced internal electric field in the NDs is critical to predicting the photoluminescence behavior. The intraband transitions, on the other hand, are blue-shifted due to many-body effects, namely, the exchange interaction and depolarization shift, which exceed the red shift induced by carrier screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl5002247 | DOI Listing |
Nanotechnology
October 2017
Université Grenoble-Alpes, F-38000 Grenoble, France. CEA-Grenoble, INAC-PHELIQS, 17 av. des Martyrs, F-38000 Grenoble, France.
In this paper, we study band-to-band and intersubband (ISB) characteristics of Si- and Ge-doped GaN/AlN heterostructures (planar and nanowires) structurally designed to absorb in the short-wavelength infrared region, particularly at 1.55 μm. Regarding the band-to-band properties, we discuss the variation of the screening of the internal electric field by free carriers, as a function of the doping density and well/nanodisk size.
View Article and Find Full Text PDFNano Lett
March 2014
CEA-CNRS Group Nanophysics and Semiconductors, CEA/INAC/SP2M and CNRS-Institute Néel, 17 rue des Martyrs, 38054 Grenoble cedex 9, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!