Nanoparticle-driven intermolecular cooperativity and miscibility in polystyrene/poly(vinyl methyl ether) blends.

J Phys Chem B

Department of Chemical Engineering and §Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.

Published: February 2014

The effect of silver nanoparticles (nAg) in PS/PVME [polystyrene/poly(vinyl methyl ether)] blends was studied with respect to the evolution of morphology, demixing temperature, and segmental dynamics. In the early stage of demixing, PVME developed an interconnected network that coarsened in the late stage. The nAg induced miscibility in the blends as supported by shear rheological measurements. The physicochemical processes that drive phase separation in blends also led to migration of nAg to the PVME phase as supported by AFM. The segmental dynamics was greatly influenced by the presence of nAg due to the specific interaction of nAg with PVME. Slower dynamics and an increase in intermolecular cooperativity in the presence of nAg further supported the role of nAg in delaying the phase separation processes and augmenting the demixing temperature in the blends. Different theoretical models were assessed to gain insight into the dynamic heterogeneity in PS/PVME blends at different length scales.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp4112712DOI Listing

Publication Analysis

Top Keywords

intermolecular cooperativity
8
demixing temperature
8
segmental dynamics
8
phase separation
8
nag pvme
8
presence nag
8
nag
7
blends
6
nanoparticle-driven intermolecular
4
cooperativity miscibility
4

Similar Publications

Highly Rigid, Yet Conformationally Adaptable, Bisporphyrin -Cage Receptors Afford Outstanding Binding Affinities, Chelate Cooperativities, and Substrate Selectivities.

J Am Chem Soc

December 2024

Nanostructured Molecular Systems and Materials group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain.

If we aim to develop efficient synthetic models of protein receptors and enzymes, we must understand the relationships of intra- and intermolecular interactions between hosts and guests and how they mutually influence their conformational energy landscape so as to adapt to each other to maximize binding energies and enhance substrate selectivities. Here, we introduce a novel design of cofacial (Zn)bisporphyrin cages based on dynamic imine bonding, which is synthetically simple, but at the same time highly robust and versatile, affording receptors composed of only -hybridized C and N atoms. The high structural rigidity of these cages renders them ideal hosts for ditopic molecules that can fit into the cavity and bind to both metal centers, leading to association constants as high as 10 M in chloroform.

View Article and Find Full Text PDF

Synergistic modification of ovalbumin by pH-driven and metal-phenolic networks: Development of dysphagia friendly high internal phase Pickering emulsions.

Int J Biol Macromol

December 2024

School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China. Electronic address:

Dysphagia is a common functional disorder that limits the variety of available foods. This study explored the coordination assembly of tannic acid (TA) with Fe to form a metal-phenolic network (MPN) and developed ovalbumin (OVA)/MPN via a pH-driven method as a novel emulsifier to stabilize high internal phase Pickering emulsions (HIPPEs). Results indicated that, following pH-driven treatment, the OVA/MPN composite particles exhibited smaller sizes, enhanced electrostatic repulsion, and improved stability.

View Article and Find Full Text PDF

Cooperativity between H-bonding interactions in networks is a fundamental aspect of solvation and self-assembly in molecular systems. The interaction of a series of bisphenols, which make an intramolecular H-bond between the two hydroxyl groups, and quinuclidine was used to quantify cooperativity in three-component networks. The presence of the intramolecular H-bond in the bisphenols was established by using H NMR spectroscopy in solution and X-ray crystallography in the solid state.

View Article and Find Full Text PDF

The directional assembly of porous organic molecules into long-range ordered architectures, featuring controlled hierarchical porosity and oriented pore channels with defined spatial arrangements, is a fundamental challenge in chemistry and materials science. Herein, using porous organic cages as starting units, we present a cooperative multiscale-assembly strategy enabling the simultaneous alignment of pore channels and directional hierarchical growth in a single step. At the microscopic level, we employed double solvents to manipulate the intermolecular packing of microporous tetrahedral [4+6] imine cages (CC1 and CC3), resulting in pore channel orientation.

View Article and Find Full Text PDF

The intermolecular host-guest complexation of head-to-tail monomers consisting of cleft-shaped bisporphyrin and trinitrofluorenone units connected by a chiral binaphthyl linker was employed to construct helically twisted supramolecular polymers. Results from 1H NMR, diffusion-ordered NMR spectroscopy, and viscometry experiments revealed that the supramolecular polymerization of these monomers follows a ring-chain competition mechanism. The introduction of bulky substituents at the linker significantly suppressed the formation of macrocyclic oligomers, whereas smaller alkyl chains facilitated the formation of the cyclic form.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!