The effects of aerosol particles on heterogeneous atmospheric chemistry and climate are determined in part by the internal arrangement of compounds within the particles. To characterize the morphology of internally mixed aerosol particles in the accumulation mode size regime, we have used cryo-transmission electron microscopy to investigate the phase separation behavior of dry, submicrometer particles composed of ammonium sulfate mixed with carboxylic acids (adipic, azelaic, citric, glutaric, malonic, pimelic, suberic, and succinic acid). Determining the morphology of dry particles is important for understanding laboratory studies of aerosol optical properties, reactivity, and cloud condensation nucleus activity, results from field instruments where aerosol particles are dried prior to analysis, and atmospheric processes like deposition mode heterogeneous ice nucleation that occur on dried particles. We observe homogeneous morphologies for highly soluble organic compounds. For organic compounds with limited aqueous solubility, partially engulfed structures are observed. At intermediate aqueous solubilities, small particles are homogeneous and larger particles are partially engulfed. Results are compared to previous studies of liquid-liquid phase separation in supermicrometer particles and the impact of these dry particle morphologies on aerosol-climate interactions are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac403279f | DOI Listing |
Int J Pharm
January 2025
School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia. Electronic address:
Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.
View Article and Find Full Text PDFInhalation of crystalline silica particles causes silicosis, which is a severe inflammatory lung disease that is associated with granulomatous and fibrotic responses. We investigated whether silica-induced silicosis might promote airway hyperreactivity (AHR) and the role of TNF-α and thalidomide in this process. Mice received an intranasal instillation of silica particles (1.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd. 300044 Hsinchu City, Taiwan, ROC. Electronic address:
This study presents a novel approach for the controlled synthesis and real-time characterization of crosslinked hyaluronic acid (HA) hydrogels utilizing a microfluidic platform coupled with hyphenated electrospray-differential mobility analysis (ES-DMA). By precisely controlling key synthesis parameters within the microfluidic environment, including pH, temperature, reaction time, and the molar ratio of HA to crosslinker (1,4-butanediol diglycidyl ether, BDDE), we successfully synthesized HA hydrogels with tailored size and properties. The integrated ES-DMA system provides rapid, in-line analysis of hydrogel particle size and distribution, enabling real-time monitoring and optimization of the synthesis process.
View Article and Find Full Text PDFHealth Phys
January 2025
Atmospheric Technologies Group, Savannah River National Laboratory, Aiken, SC.
Pollutants from anthropogenic activities including industrial processes are ubiquitous to the environment. To understand the impact from industrial aerosol on climate and human health, industrial aerosol needs to be better characterized. In this study, particle number concentrations were used as a proxy for atmospheric pollutants, which include both particles and gases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!