In primary cultures of cerebellar granule cells, [3H]nitrendipine binds with high affinity to a single site (KD 1 nM and Bmax 20 fmol/mg protein). The 1,4-dihydropyridine (DHP) class of compounds such as nitrendipine, nifedipine, and BAY K 8644 displace [3H]nitrendipine binding at nanomolar concentrations. Verapamil partially inhibits whereas diltiazem slightly increases the [3H]nitrendipine binding. In these cells, the calcium influx that is induced by depolarization is very rapid and is blocked by micromolar concentrations of inorganic calcium blockers such as cadmium, cobalt, and manganese. The calcium influx resulting from cell depolarization is potentiated by BAY K 8644 and partially inhibited (approximately 40%) by nitrendipine and nifedipine. Other non-DHP voltage-sensitive calcium channel (VSCC) antagonists, such as verapamil and diltiazem, completely blocked the depolarization-induced calcium influx. This suggested that nitrendipine and nifedipine block only a certain population of VSCCs. In contrast, verapamil and diltiazem do not appear to be selective and block all of VSCCs. Perhaps some VSCCs can be allosterically modulated by the binding site for the DHPs, whereas verapamil and diltiazem may block completely the function of all VSCCs by occupying a site that differs from the DHP binding site.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.1988.tb10605.xDOI Listing

Publication Analysis

Top Keywords

calcium influx
16
nitrendipine nifedipine
12
verapamil diltiazem
12
voltage-sensitive calcium
8
cerebellar granule
8
granule cells
8
bay 8644
8
[3h]nitrendipine binding
8
binding site
8
calcium
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!