Introduction: Image guidance for intervention is applied for complex and difficult anatomical regions. Nowadays, it is typically used in neurosurgery, otolaryngology, orthopedics and dentistry. The application of the image-guided system for soft tissues is challenging due to various deformations caused by respiratory motion, tissue elasticity and peristalsis.
Aim: The main task for the presented approach is continuous registration of preoperative computed tomography (CT) and patient position in the operating room (OR) without touching the patient and compensation of breathing motion. This approach is being developed as a step to image-guided percutaneous liver RF tumor ablation.
Material And Methods: Up to ten integrated radiological markers are placed on the patient's skin before CT scans. Then the anatomical model based on CT images is calculated. Point-to-point registration based on the Horn algorithm during a few breathing cycles is performed using a videometric tracking system. The transformation which corresponds to the minimum fiducial registration error (FRE) is found during the registration and it is treated as the initial transformation for calculating local deformation field of breathing motion compensation based on the spline approach.
Results: For manual registration of the abdominal phantom, the mean values of target registration error (TRE), fiducial localization error (FLE) and FRE are all below 4 mm for the rigid transformation and are below 1 mm for the affine transformation. For the patient's data they are all below 9 mm and 6 mm, respectively. For the automatic method, different marker configurations have been evaluated while dividing the respiratory cycle into inhale and exhale. Average median values for FRE, TRE rigid estimation and TRE based on spline deformation were 15.56 mm, 0.82 mm and 7.21 mm respectively.
Conclusions: In this application two registration methods of abdominal preoperative CT anatomical model and physical patient position in OR were presented and compared. The presented approach is being developed as a step to image-guided percutaneous liver radiofrequency ablation tumor ablation. Implementation of the automated registration method to clinical practice is easier because of shortening of preparation time in OR, no necessity of touching the patient, and no dependency on the physician's experience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908646 | PMC |
http://dx.doi.org/10.5114/wiitm.2013.39505 | DOI Listing |
ACS Sens
January 2025
CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.
View Article and Find Full Text PDFIn image-guided radiotherapy (IGRT), four-dimensional cone-beam computed tomography (4D-CBCT) is critical for assessing tumor motion during a patients breathing cycle prior to beam delivery. However, generating 4D-CBCT images with sufficient quality requires significantly more projection images than a standard 3D-CBCT scan, leading to extended scanning times and increased imaging dose to the patient. To address these limitations, there is a strong demand for methods capable of reconstructing high-quality 4D-CBCT images from a 1-minute 3D-CBCT acquisition.
View Article and Find Full Text PDFJ Clin Ultrasound
January 2025
JD Hamilton Consulting, Brighton, Michigan, USA.
Background: Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler-based techniques are limited by the loss of visualization as a tracked point moves under ribs or is dependent.
Methods: We developed a synthetic lateral phase-based algorithm for tracking lung motion to overcome these limitations.
Arch Oral Biol
January 2025
Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan. Electronic address:
Objective: This study aimed to investigate the effects of nasal obstruction on the coordinated movement of perioral tissues during mastication using a motion capture system.
Design: Twelve healthy adult participants were instructed to chew gum only on their habitual masticatory side for 30 s, with and without nasal obstruction. Nasal obstruction was induced by blocking nasal breathing with a nose clip.
Sports (Basel)
January 2025
Motion in Brains Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain.
To reduce the risk of syncope, trained breath-hold divers (BHDs) use a specialized breathing technique after surfacing called "hook breathing" (HB). It consists of a full inspiration followed by a Valsalva-like maneuver and with subsequent exhalation performed against resistance to generate continuous positive airway pressure during exhalation. This study analyzed the influence of HB on oxygen saturation recovery after a -40 m depth apnea dive in trained BHDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!