Diabetes mellitus causes chronic complications primarily affecting the vasculature of various organs, risking patients for renal failure, vision loss and heart failure. A newly discovered class of molecules, microRNAs, may be important in the genesis of these pathologic processes. microRNAs regulate gene expression at the post-transcriptional level by inhibiting target messenger RNA translation. In disease states, however, the expression of microRNAs often is altered, resulting in further altered expression (mostly overexpression) of downstream target genes. Interestingly, restoring microRNA expression to normal levels can correct downstream effects and prevent diabetes-associated changes. Investigations into microRNA involved in various pathogenetic processes mediating diabetic nephropathy, retinopathy and cardiomyopathy are highlighted in this review. Future directions of microRNA in therapeutics and diagnostics are also discussed. It is our intent to help the reader appreciate the diverse interactions microRNAs have in cellular signalling and how understanding epigenetic elements, such as microRNAs, potentially can yield new therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcjd.2013.07.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!