A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using temperature-time integration as a critical parameter in using monopolar radiofrequency ablations. | LitMetric

It is generally believed that radiofrequency energy delivered to the tissue determines the RFA lesion size. The purpose of this study was to re-evaluate this relationship and propose a potentially parameter of temperature-time integration as a better indicator of RFA lesion size. Using an Ex Vivo lesioning model, fixed 300 J RFA lesions were created under target temperature settings of 65, 75, and 85 °C. The lesion sizes were recorded and compared. Under the target temperature of 65 and 75 °C, the RFA procedures were sustained for a period of time after reaching the target temperature. The correlation between the lesion size and the sustained time (Ts) after reaching the target temperature was calculated. Under the same amount of energy output (300 J), the lesion size created under the three different target temperatures (65, 75, and 85 °C) differs significantly. When the target temperature was set to 75 °C, the correlation coefficient between the Ts and the lesion area and the maximal effective radius (Mer) were 0.913 and 0.971, respectively. When the target temperature was set to 65 °C, the correlation coefficient between the Ts and the lesion area and the Mer were 0.962 and 0.923, respectively. The RFA lesion size is not proportional to the total delivered energy. The Temperature-time integration appears to be a much better indicator that critically influences the lesion size.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00405-014-2917-6DOI Listing

Publication Analysis

Top Keywords

lesion size
24
target temperature
24
temperature-time integration
12
rfa lesion
12
lesion
9
better indicator
8
time reaching
8
reaching target
8
temperature set
8
set °c
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!