Apico-basal polarity is a cardinal molecular feature of adult eukaryotic epithelial cells and appears to be involved in several key cellular processes including polarized cell migration and maintenance of tissue architecture. Epithelial cell polarity is maintained by three well-conserved polarity complexes, namely, PAR, Crumbs and SCRIB. The location and interaction between the components of these complexes defines distinct structural domains of epithelial cells. Establishment and maintenance of apico-basal polarity is regulated through various conserved cell signalling pathways including TGF beta, Integrin and WNT signalling. Loss of cell polarity is a hallmark for carcinoma, and its underlying molecular mechanism is beginning to emerge from studies on model organisms and cancer cell lines. Moreover, deregulated expression of apico-basal polarity complex components has been reported in human tumours. In this review, we provide an overview of the apico-basal polarity complexes and their regulation, their role in cell migration, and finally their involvement in carcinogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12038-013-9410-z | DOI Listing |
Pathol Oncol Res
December 2024
Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
Invasive micropapillary carcinoma of the breast is characterized by clusters of cells presenting with inverted polarity. Although the apico-basal polarity is a fundamental property of the epithelium, the biological alterations leading to the inside-out pattern observed in invasive micropapillary carcinoma (IMPC) remain mostly unknown. The regulation of tight junctions in polarity formation and maintenance is acknowledged.
View Article and Find Full Text PDFPLoS Genet
December 2024
Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France.
Taybi-Linder syndrome (TALS) is a rare autosomal recessive disorder characterized by severe microcephaly with abnormal gyral pattern, severe growth retardation and bone abnormalities. It is caused by pathogenic variants in the RNU4ATAC gene. Its transcript, the small nuclear RNA U4atac, is involved in the excision of ~850 minor introns.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland.
In , the conoid comprises a cone with spiraling tubulin fibers, preconoidal rings, and intraconoidal microtubules. This dynamic organelle undergoes extension and retraction through the apical polar ring (APR) during egress, gliding, and invasion. The forces involved in conoid extrusion are beginning to be understood, and its role in directing F-actin flux to the pellicular space, thereby controlling parasite motility, has been proposed.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain.
ACS Biomater Sci Eng
November 2024
Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France.
Microvascular engineering seeks to exploit known cell-cell and cell-matrix interactions in the context of vasculogenesis to restore homeostasis or disease development of reliable capillary models in vitro. However, current systems generally focus on recapitulating microvessels embedded in thick gels of extracellular matrix, overlooking the significance of discontinuous capillaries, which play a vital role in tissue-blood exchanges particularly in organs like the liver. In this work, we introduce a novel method to stimulate the spontaneous organization of endothelial cells into nonembedded microvessels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!