Many horizontally acquired genes (xenogenes) in the bacterium Escherichia coli are maintained in a silent transcriptional state by the nucleoid-associated transcription regulatory protein H-NS. Recent evidence has shown that antibiotic-mediated inhibition of the transcription terminator protein Rho leads to de-repression of horizontally acquired genes, akin to a deletion of hns. The mechanism behind this similarity in outcomes between the perturbations of two distinct processes remains unclear. Using ChIP-seq of H-NS in wild-type cells, in addition to that in cells treated with bicyclomycin--a specific inhibitor of Rho, we show that bicyclomycin treatment leads to a decrease in binding signal for H-NS to the E. coli chromosome. Rho inhibition leads to RNA polymerase readthrough, which in principle could displace H-NS from the DNA, thus leading to transcriptional derepression of H-NS-silenced genes. Other possible mediators of the effect of Rho on H-NS are discussed. A possible positive feedback between Rho and H-NS might help reinforce xenogene silencing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12038-014-9413-4 | DOI Listing |
J Chem Inf Model
January 2025
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada.
The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
2AGH University of Krakow, Faculty of Materials Science and Ceramics, Kraków, Poland.
Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.
Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Parul Institute of Applied Sciences, Faculty of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India.
The rise in antimicrobial resistance poses a significant threat to global health, particularly among diabetic patients who are prone to urinary tract infections (UTIs). Pathogens that cause UTI among diabetic patients exhibit significant multidrug resistance (MDR) patterns, necessitating more precise empirical treatment strategies..
View Article and Find Full Text PDFExtremophiles
January 2025
Microbiology Laboratory, Department of Botany (DST-FIST and UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India.
To fish-out novel salt-tolerance genes, metagenomic DNA of moderately saline sediments of India's largest hypersaline Sambhar Lake was cloned in fosmid. Two functionally-picked clones helped the Escherichia coli host to tolerate 0.6 M NaCl.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!