There is rapidly growing interest in the human microbiome because of its implication in metabolic disorders and inflammatory diseases. Consequently, understanding the biology of short chain fatty acids and their receptors has become very important for identifying novel therapeutic avenues. GPR41 and GPR43 have been recognized as the cognate receptors for SCFAs and their roles in metabolism and inflammation have drawn much attention in recent years. GPR43 is highly expressed on immune cells and has been suggested to play a role in inflammatory diseases such as inflammatory bowel disease. Both GPR41 and GPR43 have been implicated in diabetes and obesity via the regulation of adipose tissue and gastrointestinal hormones. So far, many studies have provided contradictory results, and therefore further research is required to validate these receptors as drug targets. We will also discuss the synthetic modulators of GPR41 and GPR43 that are critical to understanding the functions of these receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163876 | PMC |
http://dx.doi.org/10.5483/bmbrep.2014.47.3.272 | DOI Listing |
Front Microbiol
January 2025
Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
Background: Perinatal nicotine exposure (PNE) induces pulmonary dysplasia in offspring and it increases the risk of respiratory diseases both in offspring and across generations. The maternal gut microbiota and its metabolites, such as short-chain fatty acids (SCFAs), can regulate fetal lung development and are susceptible to nicotine exposure. Therefore, modulation of PNE-induced changes in maternal gut microbiota and SCFAs may prevent the occurrence of pulmonary dysplasia in offspring.
View Article and Find Full Text PDFCirc Res
January 2025
Hypertension Research Laboratory, School of Biological Sciences (R.R.M., T.Z., E.D., L.X., A.B.-W., H.A.J., M.N., M.P., K.C.L., W.Q., J.A.O.D., F.Z.M.).
Background: Fermentation of dietary fiber by the gut microbiota leads to the production of metabolites called short-chain fatty acids, which lower blood pressure and exert cardioprotective effects. Short-chain fatty acids activate host signaling responses via the functionally redundant receptors GPR41 and GPR43, which are highly expressed by immune cells. Whether and how these receptors protect against hypertension or mediate the cardioprotective effects of dietary fiber remains unknown.
View Article and Find Full Text PDFMicrobiome
January 2025
Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China.
Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disease (ND). In recent years, multiple clinical and animal studies have shown that mitochondrial dysfunction may be involved in the pathogenesis of AD. In addition, short-chain fatty acids (SCFA) produced by intestinal microbiota metabolism have been considered to be important factors affecting central nervous system (CNS) homeostasis.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Faculty of Anesthesiology, Changhai Hospital (First Affiliated Hospital of Naval Medical University), Naval Medical University, Shanghai, 200433, China.
Cytokine storm is a hallmark for acute systemic inflammatory disease like sepsis. Intrinsic microbiome-derived short-chain fatty acid (SCFAs) like acetate modulates immune cell function and metabolism has been well studied. However, it remains poorly investigated about the effects and the underlying mechanism of exogenous acetate in acute inflammation like sepsis.
View Article and Find Full Text PDFJ Affect Disord
March 2025
The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China. Electronic address:
Background: The gut microbiome is critical for the pathophysiology of depression, and inflammation is one of the factors contributing to depression. Fzd6 has been implicated in depression. This study aimed to elucidate the effects of the Fzd6 mutation on gut microbiota structure and the possible regulatory mechanisms involved in depression-associated neuroinflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!