Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vibrio tubiashii has been linked to disease outbreaks in molluscan species, including oysters, geoducks, and clams, and shellfish hatcheries in the Pacific Northwest have been plagued by intermittent vibriosis outbreaks since 2006. Like V. tubiashii, Vibrio coralliilyticus has recently been described as an oyster pathogen in addition to its role in coral disease. Here, we describe an autolysis phenotype in V. tubiashii and its close relative V. coralliilyticus and characterize the effects of environmental conditions on this phenotype. We also explored whether the survivors of autolysis were resistant to the phenotype and if material from the autolysed culture would either regrow or have a population of viable cells. Ultimately, this work contributes to the larger understanding of bacterial population dynamics as it relates to aquaculture pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/cjm-2013-0654 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!