Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has been proposed that the epithelial-mesenchymal transition (EMT) in mammary epithelial cells and breast cancer cells generates stem cell features. WISP2 (Wnt-1-induced signaling protein-2) plays an important role in maintenance of the differentiated phenotype of estrogen receptor-positive breast cancer cells and loss of WISP2 is associated with EMT. We now report that loss of WISP2 in MCF7 breast cancer cells can also promote the emergence of a cancer stem-like cell phenotype characterized by high expression of CD44, increased aldehyde dehydrogenase activity and mammosphere formation. Higher levels of the stem cell markers Nanog and Oct3/4 were observed in those mammospheres. In addition we show that low-cell inoculums are capable of tumor formation in the mammary fat pad of immunodeficient mice. Gene expression analysis show an enrichment of markers linked to stem cell function such as SOX9 and IGFBP7 which is linked to TGF-β inducible, SMAD3-dependent transcription. Taken together, our data demonstrate that WISP2 loss promotes both EMT and the stem-like cell phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912128 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087878 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!