Restoration of oligodendrocyte pools in a mouse model of chronic cerebral hypoperfusion.

PLoS One

Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom ; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom.

Published: December 2014

Chronic cerebral hypoperfusion, a sustained modest reduction in cerebral blood flow, is associated with damage to myelinated axons and cognitive decline with ageing. Oligodendrocytes (the myelin producing cells) and their precursor cells (OPCs) may be vulnerable to the effects of hypoperfusion and in some forms of injury OPCs have the potential to respond and repair damage by increased proliferation and differentiation. Using a mouse model of cerebral hypoperfusion we have characterised the acute and long term responses of oligodendrocytes and OPCs to hypoperfusion in the corpus callosum. Following 3 days of hypoperfusion, numbers of OPCs and mature oligodendrocytes were significantly decreased compared to controls. However following 1 month of hypoperfusion, the OPC pool was restored and increased numbers of oligodendrocytes were observed. Assessment of proliferation using PCNA showed no significant differences between groups at either time point but showed reduced numbers of proliferating oligodendroglia at 3 days consistent with the loss of OPCs. Cumulative BrdU labelling experiments revealed higher numbers of proliferating cells in hypoperfused animals compared to controls and showed a proportion of these newly generated cells had differentiated into oligodendrocytes in a subset of animals. Expression of GPR17, a receptor important for the regulation of OPC differentiation following injury, was decreased following short term hypoperfusion. Despite changes to oligodendrocyte numbers there were no changes to the myelin sheath as revealed by ultrastructural assessment and fluoromyelin however axon-glial integrity was disrupted after both 3 days and 1 month hypoperfusion. Taken together, our results demonstrate the initial vulnerability of oligodendroglial pools to modest reductions in blood flow and highlight the regenerative capacity of these cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911923PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087227PLOS

Publication Analysis

Top Keywords

cerebral hypoperfusion
12
hypoperfusion
9
mouse model
8
chronic cerebral
8
blood flow
8
compared controls
8
month hypoperfusion
8
numbers proliferating
8
oligodendrocytes
5
cells
5

Similar Publications

Recent studies suggested intrathecal vasodilator administration as a therapy to mitigate post-ischemic cerebral hypoperfusion following cardiac arrest. We examined the effects of two commonly used intrathecal vasodilators, sodium nitroprusside (SNP) and nicardipine, on cerebral pial microcirculation, cortical tissue oxygen tension (PctO2), and electrocortical activity in the early post-resuscitation period using a porcine model of cardiac arrest. Thirty pigs were resuscitated after 14 min of untreated cardiac arrest.

View Article and Find Full Text PDF

Neuroinflammation has been acknowledged as being one of the main pathologies that occur following chronic cerebral hypoperfusion (CCH). Since it significantly contributes to neuronal cell damage and thereby leads to cognitive impairment, the signals related to inflammation in hypoperfusion injury have been extensively investigated over the past few years. Toll-like receptor 4 (TLR4) is the key receptor responsible for immune and inflammatory reactions.

View Article and Find Full Text PDF

Cognitive dysfunction is frequently reported in individuals with postural orthostatic tachycardia syndrome (POTS), possibly resulting from reduced cerebral blood flow (CBF). We used brain SPECT, an accessible imaging modality that has not been systematically evaluated in this patient group. Retrospective review of participants from our registry was undertaken to identify those who had a brain SPECT performed for investigation of cognitive dysfunction.

View Article and Find Full Text PDF

Persistent Penumbral Profiles Indicate a Potentially Good Outcome in Acute Stroke Patients Without Major Reperfusion.

Int J Stroke

January 2025

Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.

Background: It is acknowledged that penumbra can exist beyond 24 hours after stroke onset.

Aims: The aim of this study was to explore the association between penumbral persistence at 24-72 hours and clinical outcomes in patients who did not achieve major reperfusion.

Methods: Eligible patients participating in the International Stroke Perfusion Imaging Registry with repeated 24-72 hours perfusion imaging were retrospectively included in this study.

View Article and Find Full Text PDF

Cerebral perfusion correlates with amyloid deposition in patients with mild cognitive impairment due to Alzheimer's disease.

J Prev Alzheimers Dis

February 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China, 154 Anshan Road Tianjin 300052, PR China; Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin 300052, PR China. Electronic address:

Background: Changes in cerebral blood flow (CBF) may contribute to the initial stages of the pathophysiological process in patients with Alzheimer's disease (AD). Hypoperfusion has been observed in several brain regions in patients with mild cognitive impairment (MCI). However, the clinical significance of CBF changes in the early stages of AD is currently unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!