Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early-Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris) with respect to the Temminck's lark (E. bilopha). In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907499PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087570PLOS

Publication Analysis

Top Keywords

horned lark
12
geographically ecologically
8
ecologically phenotypically
8
phenotypically concordant
8
genus eremophila
8
geographic scale
8
phenotypic variation
8
paraphyly horned
8
multilocus species
8
species trees
8

Similar Publications

Animals employ various strategies to minimize the overlap of their vocalizations with other sounds, thereby enhancing the effectiveness of their communication. However, little attention has been given to experimentally examining how the structure of the acoustic signal changes in response to various kinds of disturbances in the soundscape. In this study, I experimentally investigated whether male thrush nightingales (Luscinia luscinia) adjust their singing rate, song frequency, and song type in response to different types of artificial sounds.

View Article and Find Full Text PDF

Assessment of species' vulnerability to climate change has been limited by mismatch between coarse macroclimate data and the fine scales at which species select habitat. Habitat mediates climate conditions, and fine-scale habitat features may permit species to exploit favourable microclimates, but habitat preferences can also constrain their ability to do so. We leveraged fine-resolution models of near-surface temperature and humidity in grasslands to understand how microclimates affect climatic exposure and demographics in a grassland bird community.

View Article and Find Full Text PDF

The accurate and reliable performance of learned vocalizations (e.g., speech and birdsong) modulates the efficacy of communication in humans and songbirds.

View Article and Find Full Text PDF

Despite the wide use of zebra finches as an animal model to study vocal learning and production, little is known about impacts on their welfare caused by routine experimental manipulations such as changing their social context. Here we conduct a post-hoc analysis of singing rate, an indicator of positive welfare, to gain insights into stress caused by social isolation, a common experimental manipulation. We find that isolation in an unfamiliar environment reduces singing rate for several days, indicating the presence of an acute stressor.

View Article and Find Full Text PDF

Generative models have diverse applications, including language processing and birdsong analysis. In this study, we demonstrate how a statistical test, designed to prevent overgeneralization in sequence generation, can be used to infer minimal models for the syllable sequences in Bengalese finch songs. We focus on the partially observable Markov model (POMM), which consists of states and the probabilistic transitions between them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!