Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The fabrication of 3D hydrogel microarrays for DNA analytics that allow simple visual signal readout for on-site applications is described. A convenient one-step polymerization of the hydrogel including in situ capture oligonucleotide immobilization is accomplished by using N,N'-dimethylacrylamide/polyethylene glycol (PEG1900 )-bisacrylamide monomers. The implementation of an acylphosphine-oxide photoinitiator even allows polymerization at daylight, whereas other approaches require exposure with light in the UV-range. This minimizes the risk of UV-caused DNA damages within the capture DNA-strand that could adversely affect the subsequent hybridization step. The porous network of these gel segments allows DNA as well as protein penetration. Thus, the successful in-gel DNA hybridization is monitored by the deposition of silver nanoparticles. These metal particles allow naked eye signal readout.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.201300487 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!