This study examined the adhesive strength of two self-adhesive methacrylate resin-based sealers (MetaSEAL and RealSeal SE) to root dentin and compared them with RealSeal and AH Plus in properties. A total of 48 extracted human single-rooted teeth were used to prepare the 0.9-mm thick longitudinal tooth slice (each per tooth). Standardized simulated canal spaces of uniform dimensions were prepared in the middle of radicular dentin. After treated with 5.25% sodium hypochlorite (NaOCl) and 17% EDTA, tooth slices were allocated randomly to four groups (n=12) in terms of different sealers used: MetaSEAL, RealSeal SE, RealSeal, and AH plus groups. The simulated canal spaces were obturated with different sealers in each group. There were 10 slabs with 20 simulated canal spaces (n=20) used in each group for push-out testing. The failure modes and the ultrastructures of fractured sealer-dentin interfaces were examined. The remaining 2 slabs in each group underwent partial demineralization for observation of the ultrastructure of resin tags. The results showed that the push-out bond strength was 12.01±4.66 MPa in MetaSEAL group, significantly higher than that in the other three groups (P<0.05). Moreover, no statistically significant differences were noted in the push-out bond strength between RealSeal SE (5.43±3.68 MPa) and AH Plus (7.34±2.83 MPa) groups and between RealSeal SE and RealSeal (2.93±1.76 MPa) groups (P>0.05). Mixed failures were predominant in the fractured sealer-dentin interfaces in MetaSEAL and AH Plus groups, while adhesive failures were frequently seen in RealSeal SE and RealSeal groups. In conclusion, after complete removal of the smear layer, MetaSEAL showed superior bond ability to root dentin. The RealSeal SE is applicable in clinical practice, with its adhesive strength similar to that of AH Plus. The self-adhesive methacrylate resin-based sealer holds promise for use in endodontic treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11596-014-1240-1 | DOI Listing |
Int J Biol Macromol
January 2025
Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China. Electronic address:
Bio-based conductive hydrogels are catching a widespread attention in the field of flexible sensors and human-machine interface interaction. Here, an enhanced autocatalytic system constructed from dopamine-encapsulated cellulose nanofibers (DA@CNF) and Cu in a glycerol-water binary solvent achieved fast auto-polymerization of hydrogels within 60 s. X-ray photoelectron spectra (XPS), UV-vis spectrum (UV), Cyclic Voltammetry (CV) and electron paramagnetic resonance (EPR) were used to characterize the autocatalytic system.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, China. Electronic address:
Conductive hydrogels have emerged as excellent candidates for the design and construction of flexible wearable sensors and have attracted great attention in the field of wearable sensors. However, there are still serious challenges to integrating high stretchability, self-healing, self-adhesion, excellent sensing properties, and good biocompatibility into hydrogel wearable devices through easy and green strategies. In this paper, multifunctional conductive hydrogels (PCGB) with good biocompatibility, high tensile (1694 % strain), self-adhesive, and self-healing properties were fabricated by incorporating boric acid (BA) and glucose (Glu) simultaneously into polyacrylic acid (PAA) and chitosan (CS) polymer networks using a simple one-pot polymerization method.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.
Objectives: To evaluate the shear bond strength (SBS) of universal cements (UCs) to dentin prepared with different diamond burs using various adhesive strategies.
Materials And Methods: One-hundred-twenty molars were prepared to expose the mid-coronal dentin. The teeth were divided into two groups according to diamond bur preparations: coarse and super-fine grit burs.
Cureus
November 2024
Department of Endodontic and Operative Dentistry, Damascus University, Damascus, SYR.
Objectives This study aimed to compare the shear bond strength of three resin cements (light-cured resin cement, pre-heated composite resin, and dual-cured self-adhesive resin cement) when bonding to lithium disilicate discs. Materials and methods Thirty-six discs made of lithium disilicate were fabricated and etched with 9.5% (HF), and 36 human premolars were collected and immersed in the acrylic molds, then randomly divided into three equal groups (n = 12): Group 1: light-cured resin cement, Group 2: pre-heated resin composite, and Group 3: dual-cured resin cement.
View Article and Find Full Text PDFMater Today Bio
October 2024
Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, PR China.
The tympanic membrane (TM) is constantly in a state of vibrating. However, there is currently a lack of drug-delivery scaffolds suitable for the dynamic environment of TM perforation. In this study, a mechano-responsive tough hydrogel was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!