The effects of mouse oocyte vitrification on mitochondrial membrane potential and distribution were explored in this study. The collected mouse oocytes were randomly divided into vitrification and control groups. Ethylene glycol (EG) and dimethylsulphoxide (DMSO) were used as cryoprotectants in the vitrification group. The mitochondrial function and distribution in the oocytes were examined by using the fluorescent probes, JC-1 and Mito Tracker green. The results showed that the ratio of red to green fluorescence in mouse oocytes was significantly decreased after thawing in the vitrification group as compared with the control group (1.28 vs. 1.70, P<0.05). The percentage of polarized distribution of the mitochondria in oocytes was conspicuously reduced in the vitrification group when compared with the control group (31% vs. 63%, P<0.05). It was suggested that vitrification significantly affects the mitochondrial function and distribution in oocytes and reduces the potential of oocyte fertilization and embryo development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11596-014-1238-8 | DOI Listing |
PLoS Genet
January 2025
Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel.
Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.
Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
Ovarian aging significantly impacts female fertility, with mitochondrial dysfunction emerging as a key factor. This study investigated the effects of recombinant follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on mitochondrial function and metabolism in aging female reproductive cells. Human granulosa cells (HGL5) were treated with FSH/LH or not.
View Article and Find Full Text PDFSci Data
January 2025
Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland.
Gametogenesis is a process in which dysfunctions lead to infertility, a growing health and social problem worldwide. In both spermatogenesis and oogenesis, post-transcriptional gene expression regulation is crucial. Essentially, all mRNAs possess non-templated poly(A) tails, whose composition and dynamics (elongation, shortening, and modifications) determine the fate of mRNA.
View Article and Find Full Text PDFAging Cell
January 2025
The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
The decline of oocyte quality with advanced maternal age has a detrimental effect on female fertility. However, there is limited knowledge of therapeutic options and their mechanisms to improve oocyte quality in reproductively older women. In this study, we demonstrated that supplementation of salidroside improves the oocyte quality of reproductively old mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!