Purpose/objectives: This article presents a quality improvement project to reduce readmissions in the Medicare population related to heart failure, acute myocardial infarction, and pneumonia. The article describes a systematic approach to the discharge process aimed at improving transitions of care from hospital to post-acute care, utilizing Lean Six Sigma methodology.
Primary Practice Setting: Inpatient acute care hospital.
Findings/conclusions: A coordinated discharge process, which includes postdischarge follow-up, can reduce avoidable readmissions. Implications for
Case Management: The quality improvement project demonstrated the significant role case management plays in preventing costly readmissions and improving outcomes for patients through better transitions of care from the hospital to the community. By utilizing Lean Six Sigma methodology, hospitals can focus on eliminating waste in their current processes and build more sustainable improvements to deliver a safe, quality, discharge process for their patients. Case managers are leading this effort to improve care transitions and assure a smoother transition into the community postdischarge..
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/NCM.0000000000000016 | DOI Listing |
Small Methods
January 2025
Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun, 130024, China.
The clean conversion of CO is a strategic issue for addressing global climate change and advancing energy transformation. While the current clean CO conversion is limited to the H pyrolysis process, using HO as a proton source is more promising and sustainable. A microplasma discharge method is developed, driven by electricity, and utilized for CO conversion with HO.
View Article and Find Full Text PDFMass Spectrom Rev
January 2025
School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
Ionization and fragmentation are at the core of mass spectrometry. But they are not necessarily separated in space, as in-source fragmentation can also occur. Here, we survey the literature published since our 2005 review on the internal energy and fragmentation in electrospray ionization sources.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.
View Article and Find Full Text PDFSci Rep
January 2025
School of Technology, Beijing Forestry University, Beijing, 100083, China.
The magnetically suspended flywheel energy storage system (MS-FESS) is an energy storage equipment that accomplishes the bidirectional transfer between electric energy and kinetic energy, and it is widely used as the power conversion unit in the uninterrupted power supply (UPS) system. First, the structure of the FESS-UPS system is introduced, and the working principles at different working states are described. Furthermore, the control strategy of the FESS-UPS is developed, and the switch oscillation of the FESS-UPS system between the charging and discharging states is analyzed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!