Resuscitation with lipid emulsion: dose-dependent recovery from cardiac pharmacotoxicity requires a cardiotonic effect.

Anesthesiology

From the Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois (M.R.F., R.R., and G.W.); Research and Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois (M.R.F., R.R., I.R., and G.W.); University of Illinois College of Medicine, Chicago, Illinois (M.R.F. and B.Z.); Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois (B.S.A.); University of Illinois College of Medicine, Peoria, Illinois (J.L.); and Section of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois (I.R.).

Published: April 2014

Background: Recent publications have questioned the validity of the "lipid sink" theory of lipid resuscitation while others have identified sink-independent effects and posed alternative mechanisms such as hemodilution. To address these issues, the authors tested the dose-dependent response to intravenous lipid emulsion during reversal of bupivacaine-induced cardiovascular toxicity in vivo. Subsequently, the authors modeled the relative contribution of volume resuscitation, drug sequestration, inotropy and combined drug sequestration, and inotropy to this response with the use of an in silico model.

Methods: Rats were surgically prepared to monitor cardiovascular metrics and deliver drugs. After catheterization and instrumentation, animals received a nonlethal dose of bupivacaine to produce transient cardiovascular toxicity, then were randomized to receive one of the four treatments: 30% intravenous lipid emulsion, 20% intravenous lipid emulsion, intravenous saline, or no treatment (n = 7 per condition; 28 total animals). Recovery responses were compared with the predictions of a pharmacokinetic-pharmacodynamic model parameterized using previously published laboratory data.

Results: Rats treated with lipid emulsions recovered faster than did rats treated with saline or no treatment. Intravenous lipid emulsion of 30% elicited the fastest hemodynamic recovery followed in order by 20% intravenous lipid emulsion, saline, and no treatment. An increase in arterial blood pressure underlay the recovery in both lipid emulsion-treated groups. Heart rates remained depressed in all four groups throughout the observation period. Model predictions mirrored the experimental recovery, and the model that combined volume, sequestration, and inotropy predicted in vivo results most accurately.

Conclusion: Intravenous lipid emulsion accelerates cardiovascular recovery from bupivacaine toxicity in a dose-dependent manner, which is driven by a cardiotonic response that complements the previously reported sequestration effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077021PMC
http://dx.doi.org/10.1097/ALN.0000000000000142DOI Listing

Publication Analysis

Top Keywords

lipid emulsion
28
intravenous lipid
24
sequestration inotropy
12
saline treatment
12
lipid
9
cardiovascular toxicity
8
drug sequestration
8
20% intravenous
8
rats treated
8
emulsion
7

Similar Publications

Lipid oxidation hinders the development of water-in-oil (W/O) emulsions. This work aimed to determine the impact of soybean phosphatidylethanolamine (SP)/tamarind gum (TG) ratios on interface activity and anti-oxidant capacity of Maillard conjugates (MCs) in W/O emulsions. Results showed that grafting degree of MCs reached maximum with SP/TG ratio at 1:1 (43.

View Article and Find Full Text PDF

Complete shielding of multivitamins to reduce toxic peroxides in the parenteral nutrition (C-SMART-PN): A randomized controlled pilot study.

Nutr Clin Pract

January 2025

Department of Nutrition, Centre Hospitalier Universitaire Sainte-Justine Research Center, Université de Montréal, Montréal, Québec, Canada.

Background: When exposed to ambient light, parenteral nutrition (PN) contamination with peroxides almost doubles, which increases oxidative stress in preterm infants, contributing to the development of bronchopulmonary dysplasia. The American Society for Parenteral and Enteral Nutrition (ASPEN) recommends complete PN photoprotection to reduce peroxide contamination and optimize its integrity but acknowledges the challenges of its implementation. In this study, a novel photoprotection procedure was tested for its effectiveness in reducing peroxide load and limiting ascorbic acid degradation, and for its feasibility and effectiveness in reducing urinary peroxide levels in preterm infants.

View Article and Find Full Text PDF

A nanoemulsion was fabricated from Cananga odorata essential oil (EO) and stabilized by incorporation of Tween 80 using ultrasonication. The major constituents of the EO were benzyl benzoate, linalool, and phenylmethyl ester. Differing sonication amplitude (20-60%) and time (2-10 min) were assessed for effects on nanoemulsion droplet size and polydispersity index (PI).

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on creating gastroretentive tablets using a mucoadhesive-floating system to enhance the bioavailability of gentiopicroside from gentian root extract, aiming for both systemic and local gastric effects.
  • The tablets were formulated by direct compression of sodium bicarbonate and solid lipid microparticles, employing quality by design (QbD) methods to analyze factors affecting their properties and performance.
  • Key findings highlighted the importance of trehalose content and homogenization time, which positively influenced tablet stability and release rates, leading to successful dual-mechanism gastroretentive tablets that maintain effectiveness in the digestive system for an extended period.
View Article and Find Full Text PDF

Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!