Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents.

Nat Commun

1] Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA.

Published: October 2015

Deep-sea hydrothermal vents are a significant source of oceanic iron. Although hydrothermal iron rapidly precipitates as inorganic minerals on mixing with seawater, it can be stabilized by organic matter and dispersed more widely than previously recognized. The nature and source of this organic matter is unknown. Here we show that microbial genes involved in cellular iron uptake are highly expressed in the Guaymas Basin deep-sea hydrothermal plume. The nature of these microbial iron transporters, taken together with the low concentration of dissolved iron and abundance of particulate iron in the plume, indicates that iron minerals are the target for this microbial scavenging and uptake. Our findings indicate that cellular iron uptake is a major process in plume microbial communities and suggest new mechanisms for generating Fe-C complexes. This 'microbial iron pump' could represent an important mode of converting hydrothermal iron into bioavailable forms that can be dispersed throughout the oceans.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms4192DOI Listing

Publication Analysis

Top Keywords

iron uptake
12
deep-sea hydrothermal
12
iron
11
microbial iron
8
hydrothermal vents
8
hydrothermal iron
8
organic matter
8
cellular iron
8
microbial
5
hydrothermal
5

Similar Publications

Cooperative and Independent Functionality of tmRNA and SmpB in : A Multifunctional Exploration Beyond Ribosome Rescue.

Int J Mol Sci

January 2025

Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.

The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the and genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in a pathogen that poses threats in aquaculture and human health.

View Article and Find Full Text PDF

Chronic diseases, including cardiovascular and neurodegenerative diseases and cancer, are significant global health challenges. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, is a critical factor in the progression of these pathologies. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, has emerged as a promising therapeutic agent due to its potent antioxidant, anti-inflammatory, and iron-regulating properties.

View Article and Find Full Text PDF

Iron transfer across a functional syncytialized trophoblast monolayer.

Placenta

November 2024

Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland. Electronic address:

Studying iron transfer across trophoblast monolayers is crucial given the significance of iron in maintaining a healthy pregnancy and supporting fetal growth and development. To get insights into the complex mechanism of transplacental iron transfer, we developed a standardized Transwell®-based monolayer model using BeWo (clone b30) cells. Our proposed method is divided into two parts: 1.

View Article and Find Full Text PDF

Hypoxia, a phenomenon that occurs when the oxygen level in tissues is lower than average, is commonly observed in human solid tumors. For oncological treatment, the hypoxic environment often results in radioresistance and chemoresistance. In this study, a new multifunctional oxygen carrier, carboxymethyl hexanoyl chitosan (CHC) nanodroplets decorated with perfluorohexane (PFH) and superparamagnetic iron oxide (SPIO) nanodroplets (SPIO@PFH-CHC), was developed and investigated.

View Article and Find Full Text PDF

The synergistic application of calcium (Ca) and magnesium (Mg) was investigated to mitigate cadmium (Cd) uptake and translocation in rice grown in Cd-contaminated soil. A pot experiment was conducted using different Ca:Mg molar ratios (Ca1:Mg2, Ca2:Mg1, and Ca1:Mg1) to evaluate their effect on Cd uptake. The results showed that the Ca1:Mg1 treatment achieved the highest reduction in grain Cd content (54.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!