Loss of Gabrd in CRH neurons blunts the corticosterone response to stress and diminishes stress-related behaviors.

Psychoneuroendocrinology

Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States. Electronic address:

Published: March 2014

The hypothalamic-pituitary-adrenal (HPA) axis is under tight regulation by strong GABAergic inhibition onto corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of the hypothalamus. CRH neurons receive two forms of GABAergic inhibition, phasic and tonic, but the specific roles of these two types of signaling have not yet been studied in this cell type. Our lab recently demonstrated a role for the GABAAR δ subunit in the tonic GABAergic regulation of CRH neurons. Using a floxed Gabrd mouse model established in our laboratory, we generated mice in which the GABAAR δ subunit is selectively removed from CRH neurons (Gabrd/Crh mice), resulting in a loss of tonic GABAergic inhibition in these neurons. Interestingly, the loss of this tonic GABAergic constraint did not significantly alter basal levels of corticosterone (CORT). However, the loss of the GABAAR δ subunit in CRH neurons blunted the CORT response to stress, likely due to the loss of the disinhibitory effect of GABA following acute stress. This blunting of HPA axis reactivity was associated with a decrease in depression-like and anxiety-like behaviors. Exogenous CORT was sufficient to increase anxiety-like and depression-like behaviors in Gabrd/Crh mice. Together, these results show the importance of the GABAAR δ subunit in the regulation of CRH neurons, and thus the HPA axis, and demonstrate that dysregulation of CRH neurons alters stress-related behaviors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947777PMC
http://dx.doi.org/10.1016/j.psyneuen.2013.12.011DOI Listing

Publication Analysis

Top Keywords

crh neurons
32
gabaar subunit
16
hpa axis
12
gabaergic inhibition
12
tonic gabaergic
12
neurons
9
crh
8
response stress
8
stress-related behaviors
8
regulation crh
8

Similar Publications

Ethnopharmacological Relevance: Chai Shao Jie Yu Granules (CSJY) is a renowned and time-honored formula employed in clinical practice for the management of various conditions, notably depression. Depression, a prevalent psychiatric disorder, poses challenges with limited effective treatment options. Traditional herbal medicines have garnered increasing attention in the realm of combating depression, being perceived as safer alternatives to pharmacotherapy.

View Article and Find Full Text PDF

Hormonal mechanisms in the paraventricular nuclei associated with hyperalgesia in Parkinson's disease model rats.

Biochem Biophys Res Commun

January 2025

Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan. Electronic address:

Pain is a major non-motor symptom of Parkinson's disease (PD). The relationship between hyperalgesia and neuropeptides originating from paraventricular nucleus (PVN) in 6-hydroxydopamine (6-OHDA) rats has already been investigated for oxytocin (OXT), but not yet for arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH). The present study aimed to investigate the alterations in these neuropeptides following nociceptive stimulation in PD model rats and to examine the mechanisms of hyperalgesia.

View Article and Find Full Text PDF

Genes involved in regulating the hypothalamic-pituitary-adrenal (HPA) axis, including the glucocorticoid receptor (GR), are linked to various stress-related psychopathologies including bipolar disorder as well as other mood and trauma-related disorders. The protein product of the cell cycle gene, is a GR interaction partner in peripheral cells. However, the precise roles of SKA2 in stress and GR signaling in the brain, specifically in nonreplicating postmitotic neurons, and its involvement in HPA axis regulation remain unclear.

View Article and Find Full Text PDF

Corticotropin-releasing hormone (CRH) signaling through its cognate receptors, CRHR1 and CRHR2, contributes to diverse stress-related functions in the mammalian brain. Whereas CRHR2 is predominantly expressed in choroid plexus and blood vessels, CRHR1 is abundantly expressed in neurons in discrete brain regions, including the neocortex, hippocampus and nucleus accumbens. Activation of CRHR1 influences motivated behaviors, emotional states, and learning and memory.

View Article and Find Full Text PDF

The natural substitution Ala610Val in the porcine glucocorticoid receptor (GR) leads to a profound compensatory downregulation of the hypothalamic-pituitary-adrenal (HPA) axis in early ontogeny. In this study, we leveraged this unique animal model to explore mechanisms of HPA axis regulation and consequences of its genetically-based persistent hypoactivity. To this end, we examined transcriptional signature of GR in the hypothalamus, hippocampus, amygdala and adrenal gland in resting conditions (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!