Site-directed spin labeling-electron spin resonance mapping of the residues of cyanobacterial clock protein KaiA that are affected by KaiA-KaiC interaction.

Genes Cells

Center for Gene Research, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8602, Japan; Division of Biological Science, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.

Published: April 2014

The cyanobacterial clock proteins KaiA, KaiB and KaiC interact with each other to generate circadian oscillations. We have identified the residues of the KaiA homodimer affected through association with hexameric KaiC (KaiC6mer) using a spin-label-tagged KaiA C-terminal domain protein (KaiAc) and performing electron spin resonance (ESR) analysis. Cys substitution and/or the attachment of a spin label to residues located at the bottom area of the KaiAc concave surface, a KaiC-binding groove, hindered the association of KaiAc with KaiC6mer, suggesting that the groove likely mediates the interaction with KaiC6mer. The residues affected by KaiC6mer association were concentrated in the three areas: the concave surface, a lobe-like structure (a mobile lobe near the concave surface) and a region adjacent to both the concave surface and the mobile lobe. The distance between the two E254, D255, L258 and R252 residues located on the mobile lobe decreased after KaiC association, suggesting that the two mobile lobes approach each other during the interaction. Analyzing the molecular dynamics of KaiAc showed that these structural changes suggested by ESR analysis were possible. Furthermore, the analyses identified three asymmetries in KaiAc dynamic structures, which gave us a possible explanation of an asymmetric association of KaiAc with KaiC6mer.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gtc.12130DOI Listing

Publication Analysis

Top Keywords

concave surface
16
mobile lobe
12
spin resonance
8
cyanobacterial clock
8
esr analysis
8
residues located
8
association kaiac
8
kaiac kaic6mer
8
kaiac
6
residues
5

Similar Publications

Background And Objective: It has been believed that polymorphic ventricular tachycardia (VT) such as torsades de pointes (TdP) seen in patients with long QT syndromes is triggered by creating early afterdepolarization (EAD)-mediated triggered activity (TA). Although the mechanisms creating the TA have been studied intensively, characteristics of the arrhythmogenic (torsadogenic) substrates that link EAD developments to TA formation are still not well understood.

Methods: Computer simulations of excitation propagation in a homogenous two-dimensional ventricular tissue with an anisotropic conduction property were performed to characterize torsadogenic substrates that potentially form TA.

View Article and Find Full Text PDF

The Evaluation of the Pterygomaxillary Separation Pattern in Le Fort I Osteotomy Using Cone Beam Computed Tomography.

J Craniofac Surg

January 2025

Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Baghdad, Bab- Almoadham, Medical City.

Pterygomaxillary separation (PMS) is an important step in Le Fort I osteotomy procedure, without which complete mobilization of the maxilla cannot be achieved. The aim of this study was to evaluate PMS patterns and their relationship with the anatomic measurements in Le Fort I osteotomy. In this prospective observational study cone beam computed tomography (CBCT) was used to measure the anatomic variables of the pterygomaxillary junction (PMJ) region including thickness, width, the distance between the most concave point at the lateral surface of PMJ and the greater palatine foramen (C-GPF), and the angle preoperatively, and the separation patterns postoperatively divided into the clean-cut type, maxillary sinus type, and the pterygoid fracture type.

View Article and Find Full Text PDF

There is a large gap between the performances indicated by rotating disk electrode (RDE) results in acidic media and the actual performances obtained in membrane-electrode assemblies (MEAs) composed of the same electrocatalysts. It is unclear whether the intrinsic kinetic reactivity of the available surface Pt sites of Pt-based cathode electrocatalysts is similar or different at RDE and in MEA. To address this, we used an operando element-selective time-resolved Pt L-edge quick X-ray absorption fine structure (QXAFS) technique to determine transient response profiles and rate constants, , , and , corresponding to changes in the oxidation states [white line (WL) intensity] and local structures (coordination numbers of Pt-O and Pt-Pt bonds) at Pt sites for nine representative Pt-based cathode electrocatalysts under transient voltage operations, aiming to understand the oxygen reduction reaction (ORR) performance gap between RDE and MEA.

View Article and Find Full Text PDF

Mining electric shovels are one of the core equipments for open-pit mining, and are currently moving towards intelligent and unmanned transformation, with intelligent mining instead of traditional manual operation. In the excavation operation process, due to the complexity and changeability of the material surfaces, different excavation strategies should be adopted to achieve the optimal excavation trajectory. It is an important research direction to realize the unmanned excavation of electric shovels by studying a trajectory planning method that is not limited to fixed resting angle surface, can comprehensively consider the type of material surfaces and aim at the minimum excavation energy consumption per unit volume.

View Article and Find Full Text PDF

Understanding the Curvature Effect on the Structure and Bonding of MoC Nanoparticles on Carbon Supports.

ACS Appl Mater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.

The interaction between molybdenum carbide (MoC) nanoparticles and both flat and curved graphene surfaces, serving as models for carbon nanotubes, was investigated by means of density functional theory. A variety of MoC nanoparticles with different sizes and stoichiometries have been used to explore different adsorption sites and modes across models with different curvature degrees. On flat graphene, off-stoichiometric MoC featuring more low-coordinated Mo atoms exhibits stronger interaction and increased electron transfers from the carbide to the carbon substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!