An optimized reverse micelle surfactant system has been developed for solution nuclear magnetic resonance studies of encapsulated proteins and nucleic acids dissolved in low viscosity fluids. Comprising the nonionic 1-decanoyl-rac-glycerol and the zwitterionic lauryldimethylamine-N-oxide (10MAG/LDAO), this mixture is shown to efficiently encapsulate a diverse set of proteins and nucleic acids. Chemical shift analyses of these systems show that high structural fidelity is achieved upon encapsulation. The 10MAG/LDAO surfactant system reduces the molecular reorientation time for encapsulated macromolecules larger than ~20 kDa leading to improved overall NMR performance. The 10MAG/LDAO system can also be used for solution NMR studies of lipid-modified proteins. New and efficient strategies for optimization of encapsulation conditions are described. 10MAG/LDAO performs well in both the low viscosity pentane and ultralow viscosity liquid ethane and therefore will serve as a general surfactant system for initiating solution NMR studies of proteins and nucleic acids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969725PMC
http://dx.doi.org/10.1021/ja410716wDOI Listing

Publication Analysis

Top Keywords

surfactant system
16
proteins nucleic
16
nucleic acids
16
low viscosity
12
optimized reverse
8
reverse micelle
8
micelle surfactant
8
encapsulated proteins
8
acids dissolved
8
dissolved low
8

Similar Publications

Targeted Delivery of BMS-1166 for Enhanced Breast Cancer Immunotherapy.

Int J Nanomedicine

January 2025

College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.

Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.

View Article and Find Full Text PDF

Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.

Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.

View Article and Find Full Text PDF

Formation of water-in-water emulsions and microgels in nonionic surfactant + gelatin aqueous mixtures.

J Colloid Interface Sci

January 2025

Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, ISCIII), Jordi Girona, 18-26, 08034 Barcelona, Spain. Electronic address:

Article Synopsis
  • The study proposes that water-in-water (W/W) emulsions can be created by mixing a polymer and a surfactant, leading to phase segregation when the surfactant's cloud temperature is lowered.
  • Experiments involved using an ethoxylated triglyceride surfactant (Kolliphor ELP) with gelatin, where the gelatin reduced the surfactant's cloud temperature, allowing for two distinct aqueous phases to form.
  • The findings reveal that this is the first documented case of W/W emulsions formed with a polymer-surfactant mixture, achieving stability through chemically crosslinked microgels and the incorporation of mucin particles.
View Article and Find Full Text PDF

The widespread use of disinfectants and antiseptics has led to the emergence of nosocomial pathogens that are less sensitive to these agents, which in combination with multidrug resistance (MDR) can pose a significant epidemiologic risk. We investigated the susceptibility of nosocomial , , , and to a 0.05% chlorhexidine (CHX) solution and a biocidal S7 composite solution based on CHX (0.

View Article and Find Full Text PDF

Design and Characterization of Novel Polymeric Hydrogels with Protein Carriers for Biomedical Use.

Int J Mol Sci

December 2024

Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland.

Hydrogels are three-dimensional polymeric matrices capable of absorbing significant amounts of water or biological fluids, making them promising candidates for biomedical applications such as drug delivery and wound healing. In this study, novel hydrogels were synthesized using a photopolymerization method and modified with cisplatin-loaded protein carriers, as well as natural extracts of nettle () and chamomile ( L.).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!