Catalytic cycloaddition of 2-methyleneaziridines with 1,1-dicyanoalkenes.

Org Lett

Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan.

Published: February 2014

2-Methyleneaziridine are a good substrate for the catalytic synthesis of cyclopentylidenamines via a [3 + 2] cycloaddition of 1,1-dicyanoalkenes using Bu2SnI2 as an effective catalyst. A C-attack from 2-methyleneaziridine yielded the desired products.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol500062aDOI Listing

Publication Analysis

Top Keywords

catalytic cycloaddition
4
cycloaddition 2-methyleneaziridines
4
2-methyleneaziridines 11-dicyanoalkenes
4
11-dicyanoalkenes 2-methyleneaziridine
4
2-methyleneaziridine good
4
good substrate
4
substrate catalytic
4
catalytic synthesis
4
synthesis cyclopentylidenamines
4
cyclopentylidenamines cycloaddition
4

Similar Publications

The position and configuration of the C═C bond have a significant impact on the spatial conformation of unsaturated lipids, which subsequently affects their biological functions. Double bond isomerization of lipids is an important mechanism of bacterial stress response, but its in-depth mechanistic study still lacks effective analytical tools. Here, we developed a visible-light-activated dual-pathway reaction system that enables simultaneous [2 + 2] cycloaddition and catalytic - isomerization of the C═C bond of unsaturated lipids via directly excited anthraquinone radicals.

View Article and Find Full Text PDF

Oxygen vacancy-rich defective tungsten oxide (WO) modified by Prussian blue for efficient photocatalytic carbon dioxide conversion and tetracycline degradation.

J Colloid Interface Sci

December 2024

Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece. Electronic address:

The coupling of carbon dioxide (CO) with epoxides to produce cyclic carbonates is a desirable decarbonization approach, but its commercial applicability is still restricted by the costly catalysts required, as well as the need for high temperature and high pressure. Herein, oxygen vacancy-rich defective tungsten oxide (WO) rich in Lewis acid sites was modified by Prussian blue (PB), and the obtained composite reaches up to 94 % styrene carbonate yield (171 mmol gh) at ambient temperature and pressure, exhibiting outstanding advantages in the photocatalytic CO cycloaddition reaction compared with currently reported photocatalysts. It is found that the introduction of PB with photothermal properties significantly enhances the capability of WO to absorb and activate CO and epoxide, along with its light utilization ability.

View Article and Find Full Text PDF

Rapid Crystallization and Versatile Metalation of Acetylhydrazone-Linked Covalent Organic Frameworks for Heterogenous Catalysis.

J Am Chem Soc

January 2025

School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.

Covalent organic frameworks (COFs) hold promise in heterogeneous metal catalysis benefiting from their robust, crystalline, and porous structures. However, synthetic challenges persist in prolonged crystallization times, limited metal loading, and uncertain coordination environments. Here, we present the rapid crystallization and versatile metalation of new acetylhydrazone-linked COFs (AH-COFs) by condensation of ketone and hydrazide components, featuring full conversion within 30 min under open-air and mild conditions.

View Article and Find Full Text PDF

Halide-free ion pair organocatalyst from biobased α-hydroxy acid for cycloaddition of CO to epoxide.

Org Biomol Chem

January 2025

State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.

View Article and Find Full Text PDF

Photoinduced Energy/Electron Transfer within Single-Chain Nanoparticles.

Angew Chem Int Ed Engl

January 2025

Queensland University of Technology, School of Chemistry and Physics, 2 George Street, 4000, Brisbane, AUSTRALIA.

We demonstrate that single-chain nanoparticles (SCNPs) - compact covalently folded single polymer chains - can increase photocatalytic performance of an embedded catalytic center, compared to the comparable catalytic system in free solution. In particular, we demonstrate that the degree of compaction allows to finely tailor the catalytic activity, thus evidencing that molecular confinement is a key factor in controlling photocatalysis. Specifically, we decorate a linear parent polymer with both photoreactive chalcone moieties as well as Ru(bpy)3 catalytic centers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!