Kinase activity and calmodulin binding are essential for growth signaling by the phytosulfokine receptor PSKR1.

Plant J

Entwicklungsbiologie und Physiologie der Pflanzen, Universität Kiel, Am Botanischen Garten 5, Kiel, 24118, Germany.

Published: April 2014

The cell growth-promoting peptide phytosulfokine (PSK) is perceived by leucine-rich repeat (LRR) receptor kinases. To elucidate PSK receptor function we analyzed PSKR1 kinase activity and binding to Ca(2+) sensors and evaluated the contribution of these activities to growth control in planta. Ectopically expressed PSKR1 was capable of auto- and transphosphorylation. Replacement of a conserved lysine within the ATP-binding region by a glutamate resulted in the inhibition of auto- and transphosphorylation kinase activities. Expression of the kinase-inactive PSKR1(K762E) receptor in the pskr null background did not restore root or shoot growth. Instead, the mutant phenotype was enhanced suggesting that the inactive receptor protein exerts growth-inhibitory activity. Bioinformatic analysis predicted a putative calmodulin (CaM)-binding site within PSKR1 kinase subdomain VIa. Bimolecular fluorescence complementation analysis demonstrated that PSKR1 binds to all isoforms of CaM, more weakly to the CaM-like protein CML8 but apparently not to CML9. Mutation of a conserved tryptophan (W831S) within the predicted CaM-binding site strongly reduced CaM binding. Expression of PSKR1(W831S) in the pskr null background resulted in growth inhibition that was similar to that of the kinase-inactive receptor. We conclude that PSK signaling requires Ca(2+) /CaM binding and kinase activity of PSKR1 in planta. We further propose that the inactivated kinase interferes with other growth-promoting signaling pathway(s).

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.12460DOI Listing

Publication Analysis

Top Keywords

kinase activity
12
pskr1 kinase
8
auto- transphosphorylation
8
pskr null
8
null background
8
cam-binding site
8
kinase
6
receptor
6
pskr1
6
activity calmodulin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!