Influenza H1 subtype-specific CTL can be induced by secondary stimulation of a hybrid protein of the first 81 amino acids of the viral NS1 non-structural protein and the HA2 subunit of A/Puerto Rico/8/34(H1N1) hemagglutinin. In addition, a derivative of this protein with 65 amino acids deleted from the N-terminal end of HA2 can also generate H1 subtype-specific CTL in bulk cultures. CTL clones established by stimulation with the derivative protein demonstrated cross-reactive lysis of target cells infected with virus strains of the H1 and H2 subtypes. Cold target competition experiments with CTL clones as effectors demonstrated that the Ag specificity between these two hybrid proteins is identical. Adoptive transfer of the CTL clone significantly reduced virus titers in the lungs of mice infected with the virus strains of the H1 or H2 subtype but not those infected with the H3 subtype virus in vivo, which reflects the in vitro CTL clone activity. These experiments demonstrate that an epitope on the hemagglutinin that is conserved on virus strains of the H1 and H2 subtypes induces a protective CTL response. These results suggest an alternative approach for developing influenza vaccines by using conserved antigenic sites on the hemagglutinin HA2 subunit to avoid the problem of frequent antigenic mutations of the HA1 subunit antibody binding sites.
Download full-text PDF |
Source |
---|
Nanoscale Adv
February 2025
National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun Jilin 130012 China.
Current seasonal influenza vaccines offer limited protection against influenza viruses due to genetic drift. The urgent need for a universal influenza vaccine to combat highly mutated strains is evident. This study utilized the conserved HA2 subunit of hemagglutinin (HA) and a short linear epitope of HA2 (HA2-16) from the H3 influenza virus to conjugate with ferritin, resulting in the construction of recombinant immunogens termed HA2-F and HA2-16-F, respectively.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Department of Infectious Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
Currently, vaccination with influenza vaccines is still an effective strategy to prevent infection by seasonal influenza virus. However, seasonal influenza vaccines frequently fail to induce effective immune protection against rapidly changing seasonal influenza viruses and emerging zoonotic influenza viruses. In addition, seasonal influenza vaccines may not confer potent protection in elderly and immunocompromised individuals.
View Article and Find Full Text PDFVirology
March 2025
D.I. Ivanovsky Institute of Virology, N. F. Gamaleya Scientific Research Institute of Epidemiology and Microbiology, 123098, Moscow, Russia.
Two biological types of influenza virus are known and distinguished by the structure of the surface glycoprotein, hemagglutinin (HA). The noninfectious virions contain the uncleaved HA0 (80 kDa), whereas the infectious type have a cleaved form of two subunits, HA1 (55 kDa) and HA2 (25 kDa). The point cleavage of HA0→HA1+HA2 by host proteases regulates the virion integrity to maintain the functionality of the intravirion axis HA→M2→M1→RNP.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
Highly pathogenic (HP) H5Nx and low-pathogenicity (LP) H9N2 avian influenza viruses (AIVs) pose global threats to the poultry industry and public health, highlighting the critical need for a dual-protective vaccine. In this study, we generated a model PR8-derived recombinant H5N2 vaccine strain with hemagglutinin (HA) and neuraminidase (NA) genes from clade 2.3.
View Article and Find Full Text PDFBiology (Basel)
October 2024
Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 15/17 Prof. Popova Str., St. Petersburg 197376, Russia.
Conserved influenza virus proteins, such as the hemagglutinin stem domain (HA2), nucleoprotein (NP), and matrix protein (M), are the main targets in the development of universal influenza vaccines. Previously, we constructed a recombinant vaccine protein Flg-HA2-2-4M2ehs containing the extracellular domain of the M2 protein (M2e) and the aa76-130 sequence of the second HA subunit as target antigens. It demonstrated immunogenicity and broad protection against influenza A viruses after intranasal and parenteral administration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!