There is increased interest in reducing our reliance on fossil fuels and increasing the share of renewable raw materials in our energy supply chain due to environmental and economic concerns. Ethanol is emerging as a potential alternative to liquid fuels due to its eco-friendly characteristics and relatively low production costs. As ethanol is currently produced from commodities also used for human and animal consumption, there is an urgent need of identifying renewable raw materials that do not pose a competitive problem. Lignocellulosic agricultural residues are an ideal choice since they can be effectively hydrolyzed to fermentable sugars and integrated in the context of a biorefinery without competing with the food supply chain. However, the conventional hydrolysis methods still have major issues that need to be addressed. These issues are related to the processing rate and generation of fermentation inhibitors, which can compromise the quality of the product and the cost of the process. As the knowledge of the processes taking place during hydrolysis of agricultural residues is increasing, new techniques are being exploited to overcome these drawbacks. This review gives an overview of the state-of-the-art of hydrolysis with subcritical and supercritical water in the context of reusing agricultural residues for the production of suitable substrates to be processed during the fermentative production of bioethanol. Presently, subcritical and/or supercritical water hydrolysis has been found to yield low sugar contents mainly due to concurrent competing degradation of sugars during the hydrothermal processes. In this line of thinking, the present review also revisits the recent applications and advances to provide an insight of future research trends to optimize on the subcritical and supercritical process kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/07388551.2013.843155 | DOI Listing |
PLoS One
January 2025
School of Hydraulic Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang, China.
Spillway chutes are critical in dam flood control, particularly in high dams where high water heads and large discharge in narrow canyons amplify the demand for safe discharging. For large unit discharges in spillways, aeration protection is essential to prevent cavitation erosion, but challenges arise from air duct choking in the traditional spillway and nonaerated regions in the stepped spillway. This paper introduces a novel spillway called the pre-aerated stilling basin spillway (PSBS).
View Article and Find Full Text PDFFood Chem
January 2025
School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Hainan Medical University, Haikou 571199, China. Electronic address:
Tea (Camellia oleifera Abel) seed oil (TSO) has antioxidant and pharmacological properties. In this study, TSO was obtained from tea seeds by subcritical n-butane extraction (SBE), which is an environmentally friendly method. The oil yield, quality characteristics, and chemical composition of the extracted TSO were compared with those of oils obtained by supercritical carbon dioxide extraction (SCDE) and conventional cold pressing (CP).
View Article and Find Full Text PDFFoods
January 2025
Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran.
Lavender is one of the most appreciated aromatic plants, with high economic value in food, cosmetics, perfumery, and pharmaceutical industries. Lavender essential oil (LEO) is known to have demonstrative antimicrobial, antioxidant, therapeutic, flavor and fragrance properties. Conventional extraction methods, e.
View Article and Find Full Text PDFMolecules
January 2025
Foodomics Laboratory, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
Propolis is a valuable natural resource for extracting various beneficial compounds. This study explores a sustainable extraction approach for Brazilian green propolis. First, supercritical fluid extraction (SFE) process parameters were optimized (co-solvent: 21.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.
Microstructural heterogeneities arising from molecular clusters directly affect the nonlinear thermodynamic properties of supercritical fluids. We present a physical model to elucidate the relation between energy exchange and heterogeneous cluster dynamics during the transition from liquidlike to gaslike conditions. By analyzing molecular-dynamics data and employing physical principles, the model considers contributions from three key processes, namely, changing cluster density, cluster separation, and transfer of molecules between clusters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!