To establish cardiomyocyte hypoxia/reoxygenation injury model by culturing primary cardiomyocytes from suckling SD rats, in order to study the effect of succinic acid on LDH leakage rate cardiomyocyte ischemia/reperfusion injury. Furthermore, flow cytometry and western blot were conducted to detect the effect of succinic acid on cardiomyocyte apoptosis, cleaved caspase-3 and p-Akt, and discuss the protective effect of succinic acid on primary cardiomyocyte hypoxia/reoxygenation injury of primary cardiomyocytes from neonatal SD rats. According to the findings of the study, succinic acid at the concentrations ranging between 31.25 mg x L(-1) and 500 mg x L(-1) had no significant effect on primary cardiomyocyte activity, and succinic acid at the concentrations of 400, 200, 100, 50 mg x L(-1) could notably reduce cardiomyocyte ischemia/reperfusion LDH leakage rate (P < 0.01 or P < 0.05, respectively). Succinic acid at the concentrations of 400 mg x L(-1) and 200 mg x L(-1) could significantly reduce the percentage of cardiomyocyte apoptosis (P < 0.05), and inhibit the protein expression of cleaved caspase-3 caused by cardiomyocyte ischemia/reperfusion (P < 0.05). Succinic acid at the concentration of 400 mg x L(-1) could remarkably increase the protein expression of cardiomyocyte Akt (P < 0.05), while succinic acid at the concentration of 200 mg x L(-1) had no obvious effect on the protein expression of cardiomyocyte Akt. Therefore, this study demonstrated that succinic acid could inhibit necrosis and apoptosis caused by cardiomyocyte hypoxia/reoxygenation by activating Akt phosphorylation.
Download full-text PDF |
Source |
---|
Hortic Res
January 2025
Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300, 00015 Monterotondo, Rome, Italy.
In the context of organic farming, the introduction of a local product to wider markets and an evaluation of storage effects, metabolic and transcriptomic variations in two broccoli rabe genotypes from production cycles of two different years were studied by comparing florets of stored fresh (SF) and packaged (P) for 4 days with those harvested fresh from the field (H). Twenty-five hydrosoluble compounds, including amino acids, carbohydrates, and organic acids, were quantified by untargeted nuclear magnetic resonance (NMR). Principal component analysis produced a neat separation among the three commodity statuses with P being the most divergent and SF closer to H.
View Article and Find Full Text PDFFood Chem
January 2025
Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China. Electronic address:
Polyphenols have potent antioxidant properties, but are easily degraded in the gastrointestinal tract, greatly limiting their application as dietary supplements. Therefore, the composition changes of lotus seedpod oligomeric procyanidins (LSOPC) in the gastrointestinal digestion, colonic fermentation and their absorption in Caco-2 cell monolayer were studied. The extracted LSOPC were identified using UPLC-Q-Exactive/MS, and a total of 47 compounds were identified.
View Article and Find Full Text PDFGut Microbes
December 2025
Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus; however, many patients respond poorly to this drug in clinical practice. The potential involvement of microbiota-mediated intestinal immunity and related signals in metformin responsiveness has not been previously investigated. In this study, we successfully constructed a humanized mouse model by fecal transplantation of the gut microbiota from clinical metformin-treated - responders and non-responders, and reproduced the difference in clinical phenotypes of responsiveness to metformin.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Faculty of Arts and Science, Turkey Suleyman Demirel University, Faculty of Arts and Science, 32260 Isparta, Turkey.
Poly(lactic) (PLA) is a biodegradable material obtained from renewable resources and is recognized as a safe biopolymer by the Food and Drug Administration. PLA expresses excellent mechanical and moldability attributes nonetheless poor elasticity/functionality limits its widespread utilization. One approach to compensate for this is chemical surface modification through free radical grafting with small organic molecules like maleic anhydride (MA).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
The industrial advancement of downstream products resulting from the directed hydrogenation of maleic anhydride is hindered by the limitations related to the activity and stability of catalysts. The development of nonprecious metal intermetallic compounds, in which active sites are adjustable in the local structures and electronic properties embedded within a distinct framework, holds immense potential in enhancing catalytic efficacy and stability. Herein, we report that nickel-based silicides catalysts, RNiSi (R = Ca, La, and Y), afford high efficiency in the selective hydrogenation of maleic anhydride.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!