Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The concentrations of heavy metals in the extracting solutions of traditional Chinese medicine are usually very low. Furthermore, a vast number of organic components contained in the extracting solutions would be able to coordinate with heavy metals, which might lead to great difficulty in high efficient removal of them from the extracting solutions. This paper was focused on the removal of heavy metals of low concentrations from the extracting solution of Angelica sinensis by applying an EDTA-modified chitosan magnetic adsorbent (EDTA-modified chitosan/SiO2/Fe3O4, abbreviated as EDCMS). The results showed that EDCMS exhibited high efficiency for the removal of heavy metals, such as Cu, Cd and Pb, e.g. the removal percentage of Cd and Pb reached 90% and 94.7%, respectively. Besides, some amounts of other heavy metals like Zn and Mn were also removed by EDCMS. In addition, the total solid contents, the amount of ferulic acid and the HPLC fingerprints of the extracting solution were not changed significantly during the heavy metal removal process. These results indicate that EDCMS may act as an applicable and efficient candidate for the removal of heavy metals from the extracting solution of A. sinensis.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!