Carbon dioxide (CO2) adsorption on a standard metal-organic framework Mg2(dobdc) (Mg/DOBDC or Mg-MOF-74) and a tetraethylenepentamine (TEPA) modified Mg2(dobdc) (TEPA-Mg/DOBDC) were investigated and compared. The structural information, surface chemistry and thermal behavior of the adsorbent samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. CO2 adsorption capacity was measured by dynamic adsorption experiments with N2-CO2 mixed gases at 60 degrees C. Results showed that the CO2 adsorption capacity of Mg/DOBDC was significantly improved after amine modification, with an increase from 2.67 to 6.06 mmol CO2/g adsorbent. Moreover, CO2 adsorption on the TEPA-Mg/DOBDC adsorbent was promoted by water vapor, and the adsorption capacity was enhanced to 8.31 mmol CO2/g absorbent. The adsorption capacity of the TEPA-Mg/DOBDC adsorbent dropped only 3% after 5 consecutive adsorption/desorption cycles. Therefore, this kind of adsorbent can be considered as a promising material for the capture of CO2 from flue gas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1001-0742(12)60267-8 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, Key Laboratory of Structural Chemistry, CHINA.
One-step adsorptive purification of ethylene (C2H4) from ternary mixture comprising of acetylene (C2H2), ethylene (C2H4) and carbon dioxide (CO2) is a great challenge in the chemical industry. Herein, a microporous metal-organic framework (FJI-H38) has been reported, which possesses a high density of electronegative O/N binding sites and appropriate pore size. Notably, at 0.
View Article and Find Full Text PDFACS Nano
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Carbon dioxide capture underpins an important range of technologies that can help to mitigate climate change. Improved carbon capture technologies that are driven by electrochemistry are under active development, and it was recently found that supercapacitor energy storage devices can reversibly capture and release carbon dioxide. So-called supercapacitive swing adsorption (SSA) has several advantages over traditional carbon dioxide capture technologies such as lower energy consumption and the use of nontoxic materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China.
The -doped biochar is recognized as a promising, cost-effective, and efficient material for CO adsorption. However, achieving efficient enrichment of -containing adsorption sites and improving their accessibility remains a bottleneck problem that restricts the adsorption performance of -doped biochar. Herein, a synthesis strategy for nitrogen-doped biochar by one-pot ionothermal treatment of biomass and zeolitic imidazolate framework (ZIF) precursors accompanied by pyrolysis is demonstrated.
View Article and Find Full Text PDFThe carbon dioxide (CO) capture and utilization strategy has emerged as an innovative and multifaceted approach to counteract carbon emissions. In this study, a highly porous muffin polyhedral barium (Ba) ̵ organic framework (BaTATB; HTATB = 4,4',4″--triazine-2,4,6-triyl-tribenzoic acid) was synthesized solvothermally. The three-dimensional honeycomb pore architectures were densely populated with Lewis acidic Ba(II) metal sites and basic nitrogen-rich triazines.
View Article and Find Full Text PDFChemSusChem
January 2025
Dalian University of Technology, State Key Laboratory of Fine Chemicals, 2 Ligong Rd., 116024, Dalian, CHINA.
Understanding the impact of surface copper valence states on the distribution of electrochemical carbon dioxide products is critical. Herein, CuO@Cu2O with a Cu2+/Cu+ interface was fabricated using wet chemical etching approach. The hollow shape offered a large region for gas adsorption, while the interfacial mixed chemical state of Cu2+/Cu+ with tunable control ratio raised the local density of CHO* and accelerated the carbon-carbon coupling reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!