Influenza A virus triggers a contagious respiratory disease that can cause considerable morbidity and mortality. Using an in vitro approach, we previously demonstrated that the pattern recognition receptor retinoic acid-inducible gene I (RIG-I) plays a key role in influenza A virus-mediated immune response. However, the importance of RIG-I signaling in vivo has not been thoroughly examined, because of the lack of an appropriate mouse models. To circumvent this issue, we generated a new transgenic mouse overexpressing LGP2 (hereafter, "LGP2 TG mice"), a major regulator of the RIG-I signaling pathway. The time course of several parameters was compared in infected wild-type and LGP2 TG mice. We found that LGP2 TG mice displayed significantly reduced inflammatory mediators and a lower leukocyte infiltration into the bronchoalveolar airspace. More importantly, LGP2 TG mice had a significant survival advantage. Hence, our in vivo study reveals that LGP2 is a major downregulator of the influenza A virus-triggered detrimental inflammatory response.

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jiu076DOI Listing

Publication Analysis

Top Keywords

lgp2 mice
12
influenza virus
8
rig-i signaling
8
lgp2
6
protective role
4
role lgp2
4
influenza
4
lgp2 influenza
4
virus pathogenesis
4
pathogenesis influenza
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!