Cachexia is a multifactorial syndrome of atrophy of skeletal muscle and adipose tissue, resulting in progressive loss of body weight associated with low quality of life and poor prognosis in cancer. Studies on experimental animal models and observations on patients have shown that the soluble factors secreted by tumor cells and tissues of the patient can participate in regulation of the wasting process. Cachexia is often accompanied by anorexia, which is caused by predominance of signals inhibiting appetite in the hypothalamus, such as release of proopiomelanocortin and anorexigenic action of proinflammatory cytokines (IL-1α, IL-1β, IL-6, TNF-α). Cachexia is also accompanied by extensive metabolic changes consisting of increase of resting energy expenditure and disturbance of carbohydrate, protein and lipid metabolism. Increased expression of protein uncoupling phosphorylation leads to increased thermogenesis in skeletal muscle. Tumor tissue hypoxia caused by its growth beyond blood vessels activates the transcription factor HIF-1, which results in increase in glycolysis, and leads to lactic acid accumulation and activation of the energy inefficient Cori cycle. Loss of fat tissue is caused by increase of lipolysis induced by lipid-mobilizing factor (LMF) and proinflammatory cytokines. Skeletal muscle wasting in cachexia is caused by a reduction of protein synthesis at the stage of initiation and elongation of translation and the simultaneous increase of protein degradation via ubiquitin-dependent and lysosomal pathways. The main mediators of skeletal muscle wasting in cancer are proteolysis-inducing factor (PIF), proinflammatory cytokines, and angiotensin II acting through increased levels of reactive oxygen species (ROS) and nuclear factor NF-κB activation, as well as glucocorticoid activated FOXO transcription factors and myostatin. Understanding of the complexity of the interaction of factors produced by the tumor and the patient's body may form the basis for the development of effective treatments for cachexia in cancer and other pathological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5604/17322693.1085135 | DOI Listing |
Anesth Analg
February 2025
SC Terapia Intensiva Neurochirurgica, Ospedale San Carlo Borromeo, ASST Santi Paolo e Carlo, Milano, Italy.
Background: Computed tomography (CT)-derived low muscle mass is associated with adverse outcomes in critically ill patients. Muscle ultrasound is a promising strategy for quantitating muscle mass. We evaluated the association between baseline ultrasound rectus femoris cross-sectional area (RF-CSA) and intensive care unit (ICU) mortality.
View Article and Find Full Text PDFPflugers Arch
January 2025
School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil.
The Notch signaling pathway is crucial for skeletal muscle development, regeneration, inflammation, and aging. This study investigated the association between interleukin-10 (IL-10) and the Notch pathway in C2C12 cells, as well as explored the effects of combined endurance and resistance exercise on the Notch and autophagy pathways in the skeletal muscle of senescence-accelerated mouse-resistant 1 Sedentary (SAMR1 CT), SAMR1 exercised (SAMR1 EX), senescence-accelerated prone mouse 8 Sedentary (SAMP8 CT), and SAMP8 exercised (SAMP8 EX). C2C12 myoblasts were transfected with siIL-10.
View Article and Find Full Text PDFEur J Neurol
January 2025
Groupe Hospitalier Pitié-Salpêtrière, Institut de Myologie, AP-HP, Sorbonne Université, Paris, France.
Background: Monoclonal gammopathy (MG) has been reported in association with numerous neurological disorders but the spectrum of MG-associated myopathies remains poorly described.
Objective: To report a newly acquired myopathy associated with MG.
Methods: Three adult patients with the same phenotype from two French referral centers were prospectively analyzed.
Unlabelled: Cancer cachexia, a multifactorial condition resulting in muscle and adipose tissue wasting, reduces the quality of life of many people with cancer. Despite decades of research, therapeutic options for cancer cachexia remain limited. Cachexia is highly prevalent in people with pancreatic ductal adenocarcinoma (PDAC), and many animal models of pancreatic cancer are used to understand mechanisms underlying cachexia.
View Article and Find Full Text PDFSkeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!