Several procedures were compared for efficiency in the extraction of certain leaf enzymes (phosphoenolpyruvate carboxylase, ribulose 1,5-diphosphate carboxylase and malate dehydrogenase) in Atriplex hastata (a "C3" species exhibiting conventional photosynthetic metabolism), and in A. spongiosa (a "C4" species in which the initial photosynthetic products are C4 dicarboxylic acids). Glycolate oxidase was also assayed in some cases, and Atriplex nummularia and Sorghum bicolor were also used as test material. A simple procedure, involving a mortar and pestle grind with carborundum added to the grinding mixture, was found to be as effective as glass bead grind procedures. In addition, it was more rapid and showed less variability with different operations.Using the carborundum grind procedure, sources of variability in enzyme activity in apparently uniform leaves were compared, as were effects of time of day, leaf age and storage procedure. In general, if apparently uniform leaves could be selected, variability in levels of enzyme activity appeared to be relatively small, not exceeding about 12%. Time of day also appeared to be relatively unimportant for the enzymes examined. However, the ontogentic status of the plant was found to be an important source of variability. Leaf age was also a major source of variability where the activity was expressed on a fresh weight basis, but specific activity (i.e. activity expressed on a protein basis) was relatively constant, at least with the range of species and leaf ages examined here.Storage of fresh samples in liquid nitrogen for 24 h, prior to extraction and assay, led to only a small reduction in activity, but substantial changes occurred if storage was in dry ice or in ice and also where extracts were stored in a deep freeze.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00397899 | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China; School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200030, China; Xinchang Pharmaceutical Factory, Zhejiang Medicine CO., LTD, China. Electronic address:
Curcuma wenyujin is acknowledged as a crucial medicinal plant containing essential oils, primarily composed of sesquiterpenoids. While numerous sesquiterpenoids exhibit versatile physiological activities, their levels in C. wenyujin are generally low, particularly the pivotal anti-cancer component elemene.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, 06120 Halle (Saale), Germany.
The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle idee 30, 50019 Sesto Fiorentino, Florence, Italy.
Global changes and growing demands have led to the development of new molecular approaches to improve crop physiological performances. Carbonic anhydrase (CA) enzymes, ubiquitous across various life kingdoms, stand out for their critical roles in plant photosynthesis and water relations. We hypothesize that the modulators of human CAs could affect plant physiology.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Rongcheng Chudao Aquaculture Co., Ltd., Rongcheng 264312, China.
Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!