20(S)-Ginsenoside Rh2 (GRh2) and ginsenoside Rg3 (GRg3) are members of the protopanaxadiol family and have been investigated for possible chemopreventive activity. This study explored the biological and apoptotic mechanisms induced by 20(S)-GRh2 in human acute leukaemia line-Reh cells. Reh cells were treated with different concentration of 20(S)-GRh2 in vitro. Cell viability was determined by Cell Counting Kit-8 and Annexin V/7-AAD assays. Mitochondrial membrane potential (MMP) was examined through JC-1 staining. Activation of caspases associated with the mitochondria-mediated apoptosis pathway was determined by Western blot. We observed that survival of Reh cells decreased after exposure to 20(S)-GRh2 in a concentration-dependent manner. Moreover, 20(S)-GRh2 can induce mitochondria depolarization of Reh cells as evident in the shift in JC-1 fluorescence from red to green. In addition, 20(S)-GRh2 induced the release of mitochondrial cytochrome c and activation of caspase-9 and caspase-3 in Reh cells. These results indicate that 20(S)-GRh2 could induce apoptosis through the mitochondrial pathway, demonstrating its potential as a chemotherapeutic agent for leukaemia therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.b13-00667 | DOI Listing |
Sci Rep
January 2025
Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
This study investigates the interrelationship between human telomerase reverse transcriptase (hTERT) and ferroptosis in precursor-B (pre-B) acute lymphoblastic leukemia (ALL), specifically examining how hTERT modulation affects ferroptotic cell death pathways. Given that hTERT overexpression characterizes various cancer phenotypes and elevated telomerase activity is observed in early-stage and relapsed ALL, we investigated the molecular mechanisms linking hTERT regulation and ferroptosis in leukemia cells. The experimental design employed Nalm-6 and REH cell lines under three distinct conditions: curcumin treatment, hTERT siRNA knockdown, and their combination.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biological Structure, University of Washington, Seattle, WA 98125.
Retinal diseases often lead to degeneration of specific retinal cell types with currently limited therapeutic options to replace the lost neurons. Previous studies have reported that overexpression of or combinations of proneural factors in Müller glia (MG) induce regeneration of functional neurons in the adult mouse retina. Recently, we applied the same strategy in dissociated cultures of fetal human MG and although we stimulated neurogenesis from MG, our effect in 2D cultures was modest and our analysis of newborn neurons was limited.
View Article and Find Full Text PDFElife
December 2024
Department of Biological Structure, University of Washington, Seattle, United States.
Retinal degeneration in mammals causes permanent loss of vision, due to an inability to regenerate naturally. Some non-mammalian vertebrates show robust regeneration, via Muller glia (MG). We have recently made significant progress in stimulating adult mouse MG to regenerate functional neurons by transgenic expression of the proneural transcription factor Ascl1.
View Article and Find Full Text PDFBiotechnol J
November 2024
Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Türkiye.
J Neurosci
November 2024
Department of Biological Structure, University of Washington, Seattle, Washington 98195
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!