Despite its clinical importance in infection and autoimmunity, the activation mechanisms of the NLRP1b inflammasome remain enigmatic. Here we show that deletion of the inflammasome adaptor ASC in BALB/c mice and in C57BL/6 macrophages expressing a functional NLRP1b prevents anthrax lethal toxin (LeTx)-induced caspase-1 autoproteolysis and speck formation. However, ASC(-/-) macrophages undergo normal LeTx-induced pyroptosis and secrete significant amounts of interleukin (IL)-1β. In contrast, ASC is critical for caspase-1 autoproteolysis and IL-1β secretion by the NLRC4, NLRP3 and AIM2 inflammasomes. Notably, LeTx-induced inflammasome activation is associated with caspase-1 ubiquitination, which is unaffected in ASC-deficient cells. In vivo, ASC-deficient mice challenged with LeTx produce significant levels of IL-1β, IL-18 and HMGB1 in circulation, although caspase-1 autoproteolysis is abolished. As a result, ASC(-/-) mice are sensitive to rapid LeTx-induced lethality. Together, these results demonstrate that ASC-driven caspase-1 autoprocessing and speck formation are dispensable for the activation of caspase-1 and the NLRP1b inflammasome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926011 | PMC |
http://dx.doi.org/10.1038/ncomms4209 | DOI Listing |
J Biol Chem
July 2022
Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Tri-Institutional PhD Program, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, New York, USA. Electronic address:
CARD8 is a pattern-recognition receptor that forms a caspase-1-activating inflammasome. CARD8 undergoes constitutive autoproteolysis, generating an N-terminal (NT) fragment with a disordered region and a ZU5 domain and a C-terminal (CT) fragment with UPA and CARD domains. Dipeptidyl peptidase 8 and dipeptidyl peptidase 9 inhibitors, including Val-boroPro, accelerate the degradation of the NT fragment via a poorly characterized proteasome-mediated pathway, thereby releasing the inflammatory CT fragment from autoinhibition.
View Article and Find Full Text PDFNature
April 2021
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
Nucleotide-binding domain and leucine-rich repeat pyrin-domain containing protein 1 (NLRP1) is an inflammasome sensor that mediates the activation of caspase-1 to induce cytokine maturation and pyroptosis. Gain-of-function mutations of NLRP1 cause severe inflammatory diseases of the skin. NLRP1 contains a function-to-find domain that auto-proteolyses into noncovalently associated subdomains, and proteasomal degradation of the repressive N-terminal fragment of NLRP1 releases its inflammatory C-terminal fragment (NLRP1 CT).
View Article and Find Full Text PDFArch Biochem Biophys
March 2021
Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, MO, USA. Electronic address:
This review takes a closer look at the structural components of the molecules involved in the processes leading to caspase-1 activation. Interleukins 1β and 18 (IL-1β, IL-18) are well-known proinflammatory cytokines that are produced following cleavage of their respective precursor proteins by the cysteine protease caspase-1. Active caspase-1 is the final step of the NLRP3 inflammasome, a three-protein intracellular complex involved in inflammation and induction of pyroptosis (a proinflammatory cell-death process).
View Article and Find Full Text PDFCell Rep
October 2020
Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address:
Several cytosolic pattern-recognition receptors (PRRs) form multiprotein complexes called canonical inflammasomes in response to intracellular danger signals. Canonical inflammasomes recruit and activate caspase-1 (CASP1), which in turn cleaves and activates inflammatory cytokines and gasdermin D (GSDMD), inducing pyroptotic cell death. Inhibitors of the dipeptidyl peptidases DPP8 and DPP9 (DPP8/9) activate both the human NLRP1 and CARD8 inflammasomes.
View Article and Find Full Text PDFLife Sci Alliance
March 2020
Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
Pathogen-related signals induce a number of cytosolic pattern-recognition receptors (PRRs) to form canonical inflammasomes, which activate pro-caspase-1 and trigger pyroptotic cell death. All well-studied inflammasome-forming PRRs oligomerize with the adapter protein ASC (apoptosis-associated speck-like protein containing a CARD) to generate a large structure in the cytosol, which induces the dimerization, autoproteolysis, and activation of the pro-caspase-1 zymogen. However, several PRRs can also directly interact with pro-caspase-1 without ASC, forming smaller "ASC-independent" inflammasomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!