Breath-holding spells may be associated with maturational delay in myelination of brain stem.

J Clin Neurophysiol

*Department of Pediatric Neurology and †Department of Pediatrics, Gulhane Military Medical Faculty, Ankara, Turkey; ‡Department of Pediatrics, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey; §Department of Neurology and ‖Department of Biochemistry, Gulhane Military Medical Faculty, Ankara, Turkey.

Published: February 2014

Purpose: To evaluate possible contribution of maturational delay of brain stem in the etiology of breath-holding spells in children using brain stem auditory evoked potentials.

Methods: The study group included children who experienced breath-holding spells. The control group consisted of healthy age- and sex-matched children. Age, gender, type and frequency of spell, hemoglobin, and ferritin levels in study group and brain stem auditory evoked potentials results in both groups were recorded. Study group was statistically compared with control group for brain stem auditory evoked potentials.

Results: The mean age of study and control groups was 26.3 ± 14.6 and 28.9 ± 13.9 months, respectively. The III-V and I-V interpeak latencies were significantly prolonged in the study group compared with the control group (2.07 ± 0.2 milliseconds; 1.92 ± 0.13 milliseconds and 4.00 ± 0.27 milliseconds; 3.83 ± 0.19 milliseconds; P = 0.009 and P = 0.03, respectively). At the same time, III-V and I-V interpeak latencies of patients without anemia in the study group compared with those of control group were significantly prolonged (2.09 ± 0.24 milliseconds; 1.92 ± 0.13 milliseconds and 4.04 ± 0.28 milliseconds; 3.83 ± 0.19 milliseconds; P = 0.007 and P = 0.01, respectively).

Conclusions: Our results consider that maturational delay in myelination of brain stem may have a role in the etiology of breath-holding spells in children.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNP.0000000000000020DOI Listing

Publication Analysis

Top Keywords

brain stem
24
study group
20
breath-holding spells
16
control group
16
maturational delay
12
stem auditory
12
auditory evoked
12
compared control
12
group
9
delay myelination
8

Similar Publications

Examining structure-activity relationships of ManNAc analogs used in the metabolic glycoengineering of human neural stem cells.

Biomater Adv

December 2024

Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA. Electronic address:

This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers.

View Article and Find Full Text PDF

Exploring SERPINA3 as a neuroinflammatory modulator in Alzheimer's disease with sex and regional brain variations.

Metab Brain Dis

January 2025

Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.

SERPINA3, a serine protease inhibitor, is strongly associated with neuroinflammation, a typical condition of AD. Its expression is linked to microglial and astrocytic markers, suggesting it plays a significant role in modulating neuroinflammatory responses. In this study, we examined the SERPINA3 expression levels, along with CHI3L1, in various brain regions of AD patients and non-demented healthy controls (NDHC).

View Article and Find Full Text PDF

Automatic segmentation of white matter lesions on multi-parametric MRI: convolutional neural network versus vision transformer.

BMC Neurol

January 2025

Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, No. 123 Ta-Pei Road, Niao-Sung Dist, Kaohsiung, 83305, Taiwan.

Background And Purpose: White matter hyperintensities in brain MRI are key indicators of various neurological conditions, and their accurate segmentation is essential for assessing disease progression. This study aims to evaluate the performance of a 3D convolutional neural network and a 3D Transformer-based model for white matter hyperintensities segmentation, focusing on their efficacy with limited datasets and similar computational resources.

Materials And Methods: We implemented a convolution-based model (3D ResNet-50 U-Net with spatial and channel squeeze & excitation) and a Transformer-based model (3D Swin Transformer with a convolutional stem).

View Article and Find Full Text PDF

Background: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.

Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.

View Article and Find Full Text PDF

ZIC1 is a context-dependent medulloblastoma driver in the rhombic lip.

Nat Genet

January 2025

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

Transcription factors are frequent cancer driver genes, exhibiting noted specificity based on the precise cell of origin. We demonstrate that ZIC1 exhibits loss-of-function (LOF) somatic events in group 4 (G4) medulloblastoma through recurrent point mutations, subchromosomal deletions and mono-allelic epigenetic repression (60% of G4 medulloblastoma). In contrast, highly similar SHH medulloblastoma exhibits distinct and diametrically opposed gain-of-function mutations and copy number gains (20% of SHH medulloblastoma).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!