Bacillus Calmette-Guérin (BCG) has been used to treat non-muscle-invasive bladder cancer for more than 30 years. It is one of the most successful biotherapies for cancer in use. Despite long clinical experience with BCG, the mechanism of its therapeutic effect is still under investigation. Available evidence suggests that urothelial cells (including bladder cancer cells themselves) and cells of the immune system both have crucial roles in the therapeutic antitumour effect of BCG. The possible involvement of bladder cancer cells includes attachment and internalization of BCG, secretion of cytokines and chemokines, and presentation of BCG and/or cancer cell antigens to cells of the immune system. Immune system cell subsets that have potential roles in BCG therapy include CD4(+) and CD8(+) lymphocytes, natural killer cells, granulocytes, macrophages, and dendritic cells. Bladder cancer cells are killed through direct cytotoxicity by these cells, by secretion of soluble factors such as TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), and, to some degree, by the direct action of BCG. Several gaps still exist in our knowledge that should be addressed in future efforts to understand this biotherapy of cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nrurol.2014.15DOI Listing

Publication Analysis

Top Keywords

bladder cancer
16
cancer cells
12
immune system
12
cells
9
bcg
8
action bcg
8
bcg therapy
8
cells immune
8
cancer
7
bladder
5

Similar Publications

As an antibody-drug conjugate (ADC), disitamab vedotin (RC48) is a promising treatment targeting ERBB2 for locally advanced and metastatic bladder cancer (BLCA). However, the subtype heterogeneity of muscle-invasive bladder cancer (MIBC) often leads to different therapeutic outcomes. In our study, we aim to explore sensitivity differences and mechanisms of different molecular subtypes of MIBC to RC48 treatment and develop a strategy for combination therapy against cancer.

View Article and Find Full Text PDF

Background: Non-muscle-invasive Bladder Cancer (NMIBC) is notorious for its high recurrence rate of 70-80%, imposing a significant human burden and making it one of the costliest cancers to manage. Current prediction tools for NMIBC recurrence rely on scoring systems that often overestimate risk and lack accuracy. Machine learning (ML) and artificial intelligence (AI) are transforming oncological urology by leveraging molecular and clinical data to enhance predictive precision.

View Article and Find Full Text PDF

Purpose: The estimated glomerular filtration rate (eGFR) has historically been calculated with a race-coefficient multiplier (RCM); however, the RCM has been broadly criticized as inaccurate and a potential contributor to exacerbating disparities. We evaluated the impact of the RCM on eGFR and examined the 30-day post-cystectomy complications in a muscle-invasive bladder cancer cohort.

Materials And Methods: We retrospectively analyzed patients diagnosed with MIBC who underwent cystectomy in the ACS NSQIP database from 2006 to 2020 using CPT and ICD codes.

View Article and Find Full Text PDF

Metabolism and effects of acetoaceto--toluidine in the urinary bladder of humanized-liver mice.

J Toxicol Pathol

January 2025

Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan.

Occupational exposure to aromatic amines is a major risk factor for urinary bladder cancer. Our previous studies showed that acetoaceto--toluidine, which is produced using -toluidine as a raw material, promotes urinary bladder carcinogenesis in rats. We also found high concentrations of -toluidine, a human bladder carcinogen, in the urine of acetoaceto--toluidine-treated rats, indicating that urinary -toluidine derived from acetoaceto--toluidine may play an important role in bladder carcinogenesis.

View Article and Find Full Text PDF

Background: Chlorination is a widespread method for drinking water disinfection that has the drawback of introducing potentially carcinogenic chemical by-products to drinking water.

Objective: We systematically evaluated the epidemiologic evidence of exposure to trihalomethane (THM) disinfection by-products and risk of cancer.

Methods: We conducted a systematic review and meta-analysis of epidemiologic studies that assessed the association of exposure to residential concentrations of THMs with risk of cancer in adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!