In transgenic Arabidopsis (Arabidopsis thaliana), expression of the Cucumber mosaic virus (CMV) 2b silencing suppressor protein from the severe subgroup IA strain Fny disrupted microRNA (miRNA)-regulated development but orthologs from mild subgroup II strains (Q and LS) did not, explaining strain-specific differences in symptom severity. However, it is unknown which miRNAs affected by Fny2b critically affect viral symptoms. Observations that Fny2b-transgenic plants phenocopy microRNA159ab (mir159ab) mutant plants and that Fny2b altered miR159ab-regulated transcript levels suggested a role for miR159ab in elicitation of severe symptoms by Fny-CMV. Using restoration of the normal phenotype in transgenic plants expressing an artificial miRNA as a proof of concept, we developed a LS-CMV-based vector to express sequences mimicking miRNA targets. Expressing a miR159 target mimic sequence using LS-CMV depleted miR159 and induced symptoms resembling those of Fny-CMV. Suppression of Fny-CMV-induced symptoms in plants harboring mutant alleles for the miR159ab targets MYB domain protein33 (MYB33) and MYB65 confirmed the importance of this miRNA in pathogenesis. This study demonstrates the utility of a viral vector to express miRNA target mimics to facilitate functional studies of miRNAs in plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938627PMC
http://dx.doi.org/10.1104/pp.113.232090DOI Listing

Publication Analysis

Top Keywords

viral vector
8
cucumber mosaic
8
mosaic virus
8
vector express
8
plants
5
vector reveal
4
reveal role
4
role microrna159
4
microrna159 disease
4
disease symptom
4

Similar Publications

High performance COVID-19 screening using machine learning.

Tunis Med

January 2025

Laboratory of viruses, vectors and hosts: LR20IPT10, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur, 1002 Tunis Belvédère, Tunisia.

Since the World Health Organization declared the Coronavirus Disease 2019 (COVID-19) pandemic as an international concern of public health emergency in the early 2020, several strategies have been initiated in many countries to prevent healthcare services breakdown and collapse of healthcare structures. The most important strategy was the increased testing, diagnosis, isolation, contact tracing to identify, quarantine and test close contacts. In this context, finding a rapid, reliable and affordable tool for COVID-19 screening was the main challenge to address the pandemic.

View Article and Find Full Text PDF

Gamma-Retroviral (RVVs) and lentiviral vectors (LVVs) represent indispensable tools in somatic gene therapy, mediating the efficient, stable transfer of therapeutic genes into a variety of human target cells. LVVs, in contrast to RVVs, are capable of stably genetically modifying non-proliferating target cells, making them the superior instrument in cell and gene therapy. To date, the LVV manufacturing process employs human embryonic kidney cells (HEK293) and derivatives thereof transiently transfected with multiple plasmids encoding the required viral vector components.

View Article and Find Full Text PDF

Development of a latency model for HIV-1 subtype C and the impact of long terminal repeat element genetic variation on latency reversal.

J Virus Erad

December 2024

HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.

Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus.

View Article and Find Full Text PDF

O-substituted Tertiary Amine-chitosans as Promising Nanocarriers for siRNA Delivery.

Curr Gene Ther

January 2025

Department of Chemistry and Environmental Sciences, IBILCE, São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil.

Introduction: The clinical translation of chitosan-based formulations for siRNA delivery has been partially limited by their poor stability/solubility at physiological conditions, although they have good biocompatibility and cost-effectiveness.

Method: In this study, the chitosan was O-substituted with diisopropylethylamine (DIPEA) groups, which improved its solubility at pH 7.4 by increasing the degree of ionization and enhanced the ability of chitosan to load siRNA at very low amine/phosphate (N/P) ratios.

View Article and Find Full Text PDF

One of the potential risk factors of recombinant adeno-associated virus (rAAV)-based gene therapy is insertional mutagenesis, which has been associated with the development of hepatocellular carcinoma (HCC) in rAAV-treated neonatal mice. The objective of this study was to investigate if well-established in vitro cell transformation assays (CTA) in mouse cell lines can detect AAV2 or AAVdj-mediated cell transformation. Since AAV integration at the Rian locus in neonatal mice has been implicated in AAV-mediated HCC, an rAAV vector specifically targeting the mouse Rian locus and an additional rAAV vector previously shown to cause HCC in neonatal mice were both tested for the induction of cell transformation in NIH3T3 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!