This study describes the preparation and the characterization of a new thiol-ene based polymeric fluorescence sensor by photo initiated polymerization of trimethylolpropane tris(3-mercaptopropionate), 2-hydroxyethylacrylate, and 2,4,6-triallyloxy-1,3,5-triazine which are used as monomers and also a photo initiator (2,2-dimethoxy-2-phenylacetophenone) for its usage as optical sensor for gold ions. The thiol-ene based polymeric membrane sensor was characterized by using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). The response characteristics of the sensors including dynamic range, pH effect, response time, and the effect of foreign ions were investigated. Fluorescence spectra showed that the excitation/emission maxima of the membrane were at 379/425 nm, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2014.01.013 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Ghent University: Universiteit Gent, Department of Organic and Macromolecular Chemistry, Krijgslaan 281 S4, 9000, Ghent, BELGIUM.
Recycling thermosetting materials presents itself as a major challenge in achieving sustainable material use. Dynamic covalent cross-linking of polymers has emerged as a viable solution that can combine the structural integrity of thermosetting materials with the (re-)processability of thermoplastics. Thioether linkages between polymer chains are quite common, and their use dates back to the vulcanization of rubbers.
View Article and Find Full Text PDFJ Sep Sci
December 2024
College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, China.
Chiral macrocycles have emerged as attractive media for chromatographic enantioseparation due to their excellent host-guest recognition properties. In this study, a new chiral stationary phase (CSP) based on 1,1'-binaphthyl chiral polyimine macrocycle (CPM) was reported. The CPM was synthesized by one-step aldehyde-amine condensation of (S)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarboxaldehyde with 1,2-phenylenediamine and bonded on thiolated silica via the thiol-ene click reaction to afford the CSP.
View Article and Find Full Text PDFJ Sep Sci
December 2024
Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany.
The present work reports on the preparation, characterization, and evaluation of a set of novel triphenyl-modified silica-based stationary phases without and with embedded ion-exchange sites for mixed-mode liquid chromatography. The three synthesized triphenyl phases differed in additionally incorporated ion-exchange sites. In one embodiment, allyltriphenylsilane was bonded to thiol-modified silica by thiol-ene click reaction, leading to particles with no ion-exchange sites.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Technical University of MunichTUM School of Natural Sciences, Department of Chemistry, WACKER-Chair of Macromolecular Chemistry, Lichtenbergstraße 485748 Garching, Germany.
Herein, novel, superabsorbent, and pH-responsive hydrogels obtained by the photochemical cross-linking of hydrophilic poly(vinylphosphonates) are introduced. First, statistical copolymers of diethyl vinylphosphonate (DEVP) and diallyl vinylphosphonate (DAlVP) are synthesized via rare earth metal-mediated group-transfer polymerization (REM-GTP) yielding similar molecular weights ( = 127-142 kg/mol) and narrow polydispersities ( < 1.12).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of Western Ontario: Western University, Chemistry, CANADA.
The development of polymers from renewable resources is a promising approach to reduce reliance on petrochemicals. In addition, depolymerization is attracting significant attention for the breakdown of polymers at their end-of-life or to achieve specific stimuli-responsive functions. However, the design of polymers incorporating both of these features remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!