A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-spectroscopic analysis and molecular modeling on the interaction of curcumin and its derivatives with human serum albumin: a comparative study. | LitMetric

Multi-spectroscopic analysis and molecular modeling on the interaction of curcumin and its derivatives with human serum albumin: a comparative study.

Spectrochim Acta A Mol Biomol Spectrosc

State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) & College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432100, PR China. Electronic address:

Published: April 2014

The comparative study about the interaction between curcumin and its derivatives (demothxycurcumin and bisdeoxycurcumin) with human serum albumin (HSA) has been carried out using multi-spectroscopic analysis and molecular modeling method. The characteristic of fluorescence quenching and the thermodynamic parameters have been studied by state emission fluorescence experiments under different temperatures with an interval of 6 K. Curcumin shows largest quenching constant and bisdeoxycurcumin shows the smallest at the temperature of 298 K. However, the quenching constant of curcumin drops quickly with the increase of temperature. Demothxycurcumin gives the largest quenching efficiency at the temperature of 310 K. An average distance of 6.7 nm for energy transfer has been determined based on förster resonance energy theory (FRET). The site competitive replacement experiments illustrate three compounds mainly binding on site I (Subdomain IIA) of the protein, and show tendency of binding on site II (Subdomain IIIA) with the removing of methoxyl groups. Circular dichroism spectra and Fourier transform infrared spectroscopy (FTIR) have been used to investigate the influence on protein secondary structure. Content of the α-helix increases at low concentrations of the compounds, while unfolding occurs at high concentrations. Docking simulation reveals possible mechanism for different quenching behavior and binding sites preferred by three compounds. The binding modes have effectively supported the conclusion of the experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2014.01.009DOI Listing

Publication Analysis

Top Keywords

multi-spectroscopic analysis
8
analysis molecular
8
molecular modeling
8
interaction curcumin
8
curcumin derivatives
8
human serum
8
serum albumin
8
comparative study
8
largest quenching
8
quenching constant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!