Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The comparative study about the interaction between curcumin and its derivatives (demothxycurcumin and bisdeoxycurcumin) with human serum albumin (HSA) has been carried out using multi-spectroscopic analysis and molecular modeling method. The characteristic of fluorescence quenching and the thermodynamic parameters have been studied by state emission fluorescence experiments under different temperatures with an interval of 6 K. Curcumin shows largest quenching constant and bisdeoxycurcumin shows the smallest at the temperature of 298 K. However, the quenching constant of curcumin drops quickly with the increase of temperature. Demothxycurcumin gives the largest quenching efficiency at the temperature of 310 K. An average distance of 6.7 nm for energy transfer has been determined based on förster resonance energy theory (FRET). The site competitive replacement experiments illustrate three compounds mainly binding on site I (Subdomain IIA) of the protein, and show tendency of binding on site II (Subdomain IIIA) with the removing of methoxyl groups. Circular dichroism spectra and Fourier transform infrared spectroscopy (FTIR) have been used to investigate the influence on protein secondary structure. Content of the α-helix increases at low concentrations of the compounds, while unfolding occurs at high concentrations. Docking simulation reveals possible mechanism for different quenching behavior and binding sites preferred by three compounds. The binding modes have effectively supported the conclusion of the experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2014.01.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!