Studying how animals interface with a virtual reality can further our understanding of how attention, learning and memory, sensory processing, and navigation are handled by the brain, at both the neurophysiological and behavioural levels. To this end, we have developed a novel vision-based tracking system, FicTrac (Fictive path Tracking software), for estimating the path an animal makes whilst rotating an air-supported sphere using only input from a standard camera and computer vision techniques. We have found that the accuracy and robustness of FicTrac outperforms a low-cost implementation of a standard optical mouse-based approach for generating fictive paths. FicTrac is simple to implement for a wide variety of experimental configurations and, importantly, is fast to execute, enabling real-time sensory feedback for behaving animals. We have used FicTrac to record the behaviour of tethered honeybees, Apis mellifera, whilst presenting visual stimuli in both open-loop and closed-loop experimental paradigms. We found that FicTrac could accurately register the fictive paths of bees as they walked towards bright green vertical bars presented on an LED arena. Using FicTrac, we have demonstrated closed-loop visual fixation in both the honeybee and the fruit fly, Drosophila melanogaster, establishing the flexibility of this system. FicTrac provides the experimenter with a simple yet adaptable system that can be combined with electrophysiological recording techniques to study the neural mechanisms of behaviour in a variety of organisms, including walking vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2014.01.010DOI Listing

Publication Analysis

Top Keywords

fictrac
8
generating fictive
8
system fictrac
8
fictive paths
8
fictrac visual
4
visual method
4
method tracking
4
tracking spherical
4
spherical motion
4
motion generating
4

Similar Publications

Insects modify their behaviour depending on the feedback sensor used when walking on a trackball in virtual reality.

J Exp Biol

October 2015

Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.

When using virtual-reality paradigms to study animal behaviour, careful attention must be paid to how the animal's actions are detected. This is particularly relevant in closed-loop experiments where the animal interacts with a stimulus. Many different sensor types have been used to measure aspects of behaviour, and although some sensors may be more accurate than others, few studies have examined whether, and how, such differences affect an animal's behaviour in a closed-loop experiment.

View Article and Find Full Text PDF

Studying how animals interface with a virtual reality can further our understanding of how attention, learning and memory, sensory processing, and navigation are handled by the brain, at both the neurophysiological and behavioural levels. To this end, we have developed a novel vision-based tracking system, FicTrac (Fictive path Tracking software), for estimating the path an animal makes whilst rotating an air-supported sphere using only input from a standard camera and computer vision techniques. We have found that the accuracy and robustness of FicTrac outperforms a low-cost implementation of a standard optical mouse-based approach for generating fictive paths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!