A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Markov mean properties for cell death-related protein classification. | LitMetric

Markov mean properties for cell death-related protein classification.

J Theor Biol

Information and Communication Technologies Department, Faculty of Computer Science, University of A Coruña, 15071A Coruña, Spain.

Published: May 2014

AI Article Synopsis

  • Cell death (CD) is an important biological function that influences various processes in the body, prompting the need for efficient methods to identify new molecular targets related to CD.
  • A novel classification model using Markov Mean Properties was created to predict CD-related proteins, analyzing 2423 protein chains based on topological and physicochemical data.
  • The model, developed using Machine Learning algorithms, achieved high accuracy with an AUROC of 0.992 and identified several human proteins linked to CD functions, such as those involved in virus-host interactions and DNA repair processes.

Article Abstract

The cell death (CD) is a dynamic biological function involved in physiological and pathological processes. Due to the complexity of CD, there is a demand for fast theoretical methods that can help to find new CD molecular targets. The current work presents the first classification model to predict CD-related proteins based on Markov Mean Properties. These protein descriptors have been calculated with the MInD-Prot tool using the topological information of the amino acid contact networks of the 2423 protein chains, five atom physicochemical properties and the protein 3D regions. The Machine Learning algorithms from Weka were used to find the best classification model for CD-related protein chains using all 20 attributes. The most accurate algorithm to solve this problem was K*. After several feature subset methods, the best model found is based on only 11 variables and is characterized by the Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.992 and the true positive rate (TP Rate) of 88.2% (validation set). 7409 protein chains labeled with "unknown function" in the PDB Databank were analyzed with the best model in order to predict the CD-related biological activity. Thus, several proteins have been predicted to have CD-related function in Homo sapiens: 3DRX-involved in virus-host interaction biological process, protein homooligomerization; 4DWF-involved in cell differentiation, chromatin modification, DNA damage response, protein stabilization; 1IUR-involved in ATP binding, chaperone binding; 1J7D-involved in DNA double-strand break processing, histone ubiquitination, nucleotide-binding oligomerization; 1UTU-linked with DNA repair, regulation of transcription; 3EEC-participating to the cellular membrane organization, egress of virus within host cell, class mediator resulting in cell cycle arrest, negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle and apoptotic process. Other proteins from bacteria predicted as CD-related are 2G3V - a CAG pathogenicity island protein 13 from Helicobacter pylori, 4G5A - a hypothetical protein in Bacteroides thetaiotaomicron, 1YLK-involved in the nitrogen metabolism of Mycobacterium tuberculosis, and 1XSV - with possible DNA/RNA binding domains. The results demonstrated the possibility to predict CD-related proteins using molecular information encoded into the protein 3D structure. Thus, the current work demonstrated the possibility to predict new molecular targets involved in cell-death processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2014.01.033DOI Listing

Publication Analysis

Top Keywords

predict cd-related
12
protein chains
12
protein
11
markov properties
8
molecular targets
8
current work
8
classification model
8
cd-related proteins
8
properties protein
8
best model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!