Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1532-950X.2013.12106.xDOI Listing

Publication Analysis

Top Keywords

cross-linked hyaluronic
4
hyaluronic acid
4
acid based
4
based gel
4
gel wound
4
wound healing
4
cross-linked
1
acid
1
based
1
gel
1

Similar Publications

Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines.

In Vitro Model

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, F-59000 Lille, France.

Background: Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells.

View Article and Find Full Text PDF

Decreasing the aggregation of photosensitizers to facilitate energy transfer for improved photodynamic therapy.

Nanoscale

January 2025

Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.

The mode of energy transfer between photosensitizers and oxygen determines the yield of singlet oxygen (O), crucial for photodynamic therapy (PDT). However, the aggregation of photosensitizers promotes electron transfer while inhibiting pure energy transfer, resulting in the generation of the hypotoxic superoxide anion (O) and consumption of substantial oxygen. Herein, we achieve the reduction of the aggregation of photosensitizers to inhibit electron transfer through classical chemical crosslinking, thereby boosting the production of O.

View Article and Find Full Text PDF

Dual physiological responsive structural color hydrogel particles for wound repair.

Bioact Mater

April 2025

Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

Hydrogel-based patches have demonstrated their values in diabetic wounds repair, particularly those intelligent dressings with continuous repair promoting and monitoring capabilities. Here, we propose a type of dual physiological responsive structural color particles for wound repair. The particles are composed of a hyaluronic acid methacryloyl (HAMA)-sodium alginate (Alg) inverse opal scaffold, filled with oxidized dextran (ODex)/quaternized chitosan (QCS) hydrogel.

View Article and Find Full Text PDF

Female sexual dysfunction is highly prevalent among postmenopausal females approaching 50%, with vulvovaginal atrophy (VVA) being a cardinal sign. For decades, hormone replacement therapy was the only solution to relieve symptoms associated with this atrophy. However, it was limited by its serious side effects, raising the need for new treatment strategies.

View Article and Find Full Text PDF

Giant unilamellar vesicles (GUVs) are versatile cell models in biomedical and environmental research. Of the various GUV production methods, hydrogel-assisted GUV production is most easily implemented in a typical biological laboratory. To date, agarose, polyvinyl alcohol, cross-linked dextran-PEG, polyacrylamide, and starch hydrogels have been used to produce GUVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!