An increasing number of studies directed at supercooling water droplets on surfaces with different wettabilities have appeared in recent years. This activity has been stimulated by the recognition that water supercooling phenomena can be effectively used to develop methods for protecting outdoor equipment and infrastructure elements against icing and snow accretion. In this article, we discuss the nucleation kinetics of supercooled sessile water droplets on hydrophilic, hydrophobic, and superhydrophobic surfaces under isothermal conditions at temperatures of -8, -10, and -15 °C and a saturated water vapor atmosphere. The statistics of nucleation events for the ensembles of freezing sessile droplets is completed by the detailed analysis of the contact angle temperature dependence and freezing of individual droplets in a saturated vapor atmosphere. We have demonstrated that the most essential freezing delay is characteristic of the superhydrophobic coating on aluminum, with the texture resistant to contact with ice and water. This delay can reach many hours at T = -8 °C and a few minutes at -23 °C. The observed behavior is analyzed on the basis of different nucleation mechanisms. The dissimilarity in the total nucleation rate, detected for two superhydrophobic substrates having the same apparent contact angle of the water drop but different resistivities of surface texture to the contact with water/ice, is associated with the contribution of heterogeneous nucleation on external centers located at the water droplet/air interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la403796g | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China.
Ice accretion caused by freezing rain or snowstorms is a common phenomenon in cold climates that seriously threatens the safety and reliability of telecommunication lines and other overhead networks. Various anti-icing strategies have been demonstrated through surface engineering to delay ice formation. However, existing anti-icing surfaces still encounter several challenges; for example, surfaces are prone to ice-pinning formation due to the impact of supercooled droplets, which leads to a loss of anti-icing effectiveness.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Technology Partners Foundation, Bitwy Warszawskiej 1920 r. 7A, 02-366 Warsaw, Poland.
Within this study, a methodology for the numerical simulation of droplet freezing, including a micrometer texturized pattern, was developed. The finite volume method was then applied to simulate the behavior of water droplets. The procedure was divided into two processes: stabilization and freezing.
View Article and Find Full Text PDFFoods
December 2024
Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea.
Seafood quality preservation remains a critical focus in the food industry, particularly as the freeze-thaw process significantly impacts the freshness and safety of aquatic products. This study investigated quality changes in frozen mackerel subjected to two thawing methods, room temperature (RT) and running water (WT), and assessed the potential of hyperspectral imaging (HSI) for classifying these methods. After thawing, mackerel samples were stored at 5 °C for 21 days, with physicochemical, textural, and spectroscopic analyses tracking quality changes and supporting the development of a spectroscopic classification model.
View Article and Find Full Text PDFCryobiology
January 2025
Specialized Surgical Hospital "Doctor Malinov", 46, Gotse Delchev blvd., 1860 Sofia, Bulgaria.
The cryopreservation of human spermatozoa is an integral part of cryobiology, aiming to support the in-vitro fertilization. The latter relies on the availability of as much as possible reproductively active spermatozoa, whose number after thawing decreases due to the accompanied freezing injury and the cytotoxicity of cryoprotectants. An innovative option to circumvent these obstacles is to make the freezing interface non-wettable, by coating it with rapeseed oil soot possessing intrinsic cryoprotective properties, delaying the ice formation and possibly providing identical rates of intracellular dehydration and extracellular crystallization.
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Centre, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China. Electronic address:
Temperature fluctuations can negatively affect the quality of frozen shrimp. Research on novel cryoprotectants to replace traditional agents (phosphate, etc.) has become a hotspot.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!