Adaptation to changing environmental conditions is an important strategy for survival of foodborne bacterial pathogens. Vibrio parahaemolyticus is a gram-negative seafoodborne enteric pathogen found in the marine environment both free living and associated with oysters. This pathogen is a moderate halophile, with optimal growth at 3% NaCl. Among the several stresses imposed upon enteric bacteria, acid stress is perhaps one of the most important. V. parahaemolyticus has a lysine decarboxylase system responsible for decarboxylation of lysine to the basic product cadaverine, an important acid stress response system in bacteria. Preadaptation to mild acid conditions, i.e., the acid tolerance response, enhances survival under lethal acid conditions. Because of the variety of conditions encountered by V. parahaemolyticus in the marine environment and in oyster postharvest facilities, we examined the nature of the V. parahaemolyticus acid tolerance response under high-salinity conditions. Short preadaptation to a 6% salt concentration increased survival of the wild-type strain but not that of a cadA mutant under lethal acid conditions. However, prolonged exposure to high salinity (16 h) increased survival of both the wild-type and the cadA mutant strains. This phenotype was not dependent on the stress response sigma factor RpoS. Although this preadaptation response is much more pronounced in V. parahaemolyticus, this characteristic is not limited to this species. Both Vibrio cholerae and Vibrio vulnificus also survive better under lethal acid stress conditions when preadapted to high-salinity conditions. High salt both protected the organism against acid stress and increased survival under -20°C cold stress conditions. High-salt adaptation of V. parahaemolyticus strains significantly increases survival under environmental stresses that would otherwise be lethal to these bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028X.JFP-13-241 | DOI Listing |
Plant Physiol Biochem
January 2025
Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye. Electronic address:
Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking.
View Article and Find Full Text PDFChem Biodivers
January 2025
UNIFESSPA: Universidade Federal do Sul e Sudeste do Para, Faculdade de Psicologia, Rod. BR-230 (Transamazônica), Loteamento Cidade Jardim, Av. dos Ipês, s/n.º - Ci, 68503000, Marabá, BRAZIL.
Chrysin (5,7-dihydroxyflavone) is a natural flavonoid with potential anxiolytic-like effects in preclinical models. Acute treatment with this molecule (0 - 10 mg/kg) produced a biphasic dose-response in the zebrafish light/dark test (LDT), with anxiolytic-like effect at low doses and anxiogenic-like effects at high doses. Chrysin (1 mg/kg) decreased anxiety-like behavior in the zebrafish novel tank test (NTT), but did not prevent the anxiogenic effects of acute stress.
View Article and Find Full Text PDFMaxillofac Plast Reconstr Surg
January 2025
Gangneung-Wonju National University KR, Gangneung-si, Gangwon-do, Republic of Korea.
Background: This study aimed to evaluate the effects of 4-hexylresorcinol (4HR), a synthetic compound with antioxidant and stress-modulating properties, on diabetic sarcopenia in the masseter muscle.
Methods: A controlled, parallel-arm study was conducted using 38 Sprague-Dawley rats divided into diabetic and non-diabetic groups. Diabetes was induced with streptozotocin (STZ), and the groups were further subdivided to receive weekly subcutaneous injections of either 4HR or saline.
Plant Mol Biol
January 2025
Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
Z. armatum is an economically valued crop known for its rich aroma and medicinal properties. This study identified 45 members of the SQUAMOSA-PROMOTER BINDING PROTEIN LIKE (SPL) gene family in the genome of Z.
View Article and Find Full Text PDFChem Biodivers
January 2025
Gümüşhane Üniversitesi: Gumushane Universitesi, GUMUSHANE HEALTH SERVICES VOCATIONAL SCHOOL, Gumushane University, Vocational School of Health Services, 29100, Gumushane, Tü, Gümüşhane, TURKEY.
This study investigates the antioxidant and enzyme inhibitory properties of Phlomis armeniaca, a perennial plant native to the eastern and southeastern regions of Türkiye. Ethanol extracts of the plant were analyzed using various bioanalytical methods, including Fe³⁺-Fe²⁺ reducing power, CUPRAC, DPPH, and ABTS radical scavenging activities, as well as total phenolic and flavonoid content assessments. The results showed that Phlomis armeniaca is rich in phenolic (38.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!