Regio- and stereoselective aminopentadienylation of carbonyl compounds.

J Org Chem

Departamento de Quı́mica Orgánica, Facultad de Ciencias and Instituto de Sı́ntesis Orgánica (ISO), Universidad de Alicante , Apdo. 99, 03080 Alicante, Spain.

Published: February 2014

A simple and robust protocol is detailed for the preparation of enantioenriched α-substituted (1,4-pentadien-3-yl)amine derivatives. The methodology involves the addition of an in situ formed pentadienyl indium reagent to chiral tert-butylsulfinimines, previously formed in the same pot. The addition takes place with excellent γ-regio- and diastereoselectivity for a wide range of carbonyl compounds, including α-unsubstituted aldehydes and methyl alkyl ketones. The catalytic hydrogenation of the sulfinamines obtained provides a convenient access to chiral α-substituted (3-pentyl)amines. The hydroboration-oxidation of the α-(1,4-pentadien-3-yl)amine derivatives, followed by a cyclization under Mitsunobu conditions, takes place with an excellent diastereoselectivity governed by the chiral sulfinyl group.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo402854zDOI Listing

Publication Analysis

Top Keywords

carbonyl compounds
8
takes place
8
place excellent
8
regio- stereoselective
4
stereoselective aminopentadienylation
4
aminopentadienylation carbonyl
4
compounds simple
4
simple robust
4
robust protocol
4
protocol detailed
4

Similar Publications

Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti-inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN-activated self-immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response-specific H2S delivery.

View Article and Find Full Text PDF

Inhibitory Effect on the Tyrosinase Activity and Low Cytotoxicity of Monounsaturated Long-Chain Chelating Fatty Ester.

An Acad Bras Cienc

January 2025

Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Laboratório de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular, Rua Augusto Corrêa, 01, 66075-110 Belém, PA, Brazil.

In the present study, 5-Hydroxy-2-(Oleoyloxymethyl) -4H-pyran-4-one (KMO 3), and their chelated with Cu(II) and Fe(III) ions were synthesized to explore their inhibitory activity against tyrosinase and cytotoxicity. To this end, the structures of the obtained compounds were confirmed by ATR/FT-IR, 13C and 1H-NMR, and UV-vis techniques. The results show that chelating fatty ester presents the bands at 1567m, 1511w cm-1 attributed to the coordinated carbonyl (Cu(II)←[O=C]2), and the bands at 1540m, 1519m cm-1 which were attributed to the coordinated carbonyl (Fe(III)←[O=C]3).

View Article and Find Full Text PDF

Dichlorination of olefins with trichloroisocyanuric acid (TCCA) and tetrabutylammonium chloride (TBACl).

Org Biomol Chem

January 2025

Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey.

Herein, a new metal-free, molecular chlorine-free, environmentally friendly, atom-economical, short time, inexpensive and simple operation method with mild reaction conditions for chlorination of alkenes, cyclic alkenes, ,-unsaturated carbonyl compounds, heteroaromatics, and natural products was reported with up to 96% yields using trichloroisocyanuric acid (TCCA) as the electrophilic chlorine source and TBACl as the nucleophilic chlorine source. It was demonstrated with bicyclic alkene benzonorbornadiene that regioselective chlorobromination and dibromination reactions can be carried out through TCCA/TBABr redox reactions, where TCCA acts as an oxidant in the presence of TBABr. The structures of the redox products were confirmed as a result of control experiments conducted with the newly presented DBI/TBACl and DBI/TBABr halogenation pairs.

View Article and Find Full Text PDF

The enantioselective synthesis of 1,4-dicarbonyl compounds continues to pose a significant challenge in organic synthesis, and a catalytic process which generates two adjacent stereogenic centers with full stereochemical control is lacking until now. The 1,4-relationship of the functional groups requires an Umpolung strategy as one of the α-carbonyl positions has to be inverted into an electrophilic center to react with a normal enolate. We report herein the highly enantio- and diastereoselective addition of silyl ketene acetals toward electrophilic 1-azaallyl cations to furnish chiral 4-hydrazonoesters, which are masked 1,4-dicarbonyl compounds.

View Article and Find Full Text PDF

Discovery of Triketone-Indazolones as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibiting-Based Herbicides.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial herbicide target in current research, playing an important role in the comprehensive management of resistant weeds. However, the limited crop selectivity and less effectiveness against grass weeds of many existing HPPD inhibitors, limit their further application. To address these issues, a series of novel HPPD inhibitors with fused ring structures were designed and synthesized by introducing an electron-rich indazolone ring and combining it with the classical triketone pharmacophore structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!