[Cd3Cu]CuP10, a polyphosphide containing adamantine-analogue [P10] unit undergoes a solid-state polymerization to form [P6] rings and tubular [P26] polymer units at elevated temperatures. This reaction represents the rare case of a polyphosphide polymerization in the solid state. The formation of such a polymeric unit starting from a molecular precursor is the first evidence of the general possibility to perform a bottom-up route to the well-known tubular polyphosphide units of elemental phosphorus in a solid material. Temperature-dependent X-ray powder diffraction experiments substantiate the solid phase transformation of [Cd3Cu]CuP10 starting at 550 °C to the polymerized form via an additional intermediate step. A single crystal structure determination of the quenched product at room temperature was performed to evaluate the structural properties and the resulting polyphosphide units. The full polymerization and decomposition mechanism has been analyzed by thermogravimetric experiments and subsequent X-ray powder phase analyses. The present [P26] polymer unit represents a former unseen one-dimensional cut-out of the two-dimensional polyphosphide substructure of Ag3P11 and can be directly related to the tubular polyphosphide substructures of violet or fibrous phosphorus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic401508n | DOI Listing |
Microorganisms
August 2024
Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, 24358 León, Spain.
The industrial production of polyhydroxyalkanoates (PHAs) faces several limitations that hinder their competitiveness against traditional plastics, mainly due to high production costs and complex recovery processes. Innovations in microbial biotechnology offer promising solutions to overcome these challenges. The modification of the biosynthetic pathways is one of the main tactics; allowing for direct carbon flux toward PHA formation, increasing polymer accumulation and improving polymer properties.
View Article and Find Full Text PDFWater Res
December 2023
Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo 24358, León, Spain.
Biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), have emerged as an alternative to petrochemical-based plastics. The present work explores the production of PHAs based on the biotransformation of potato processing wastewater and addresses two different strategies for PHA recovery. To this end, culture conditions for PHA synthesis by Cupriavidus necator DSM 545 were optimized on a laboratory scale using a response surface methodology-based experimental design.
View Article and Find Full Text PDFJ Dent Res
December 2023
Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.
Biomimetic strategies like peptide-guided collagen mineralization promise to enhance the effectiveness of dentin remineralization. We recently reported that rationally designed amelogenin-derived peptides P26 and P32 promoted apatite nucleation, mineralized collagen, and showed potential in enamel regrowth and dentin remineralization. To facilitate the clinical application of amelogenin-derived peptides and to uncover their effectiveness in repairing dentin, we have now implemented a chitosan (CS) hydrogel for peptide delivery and have investigated the effects of P26-CS and P32-CS hydrogels on dentin remineralization using 2 in situ experimental models that exhibited different levels of demineralization.
View Article and Find Full Text PDFBioresour Technol
October 2023
Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, León 24358, Spain.
Polyhydroxyalkanoates (PHAs) are considered an alternative to fossil fuel-based plastics. However, in spite of their interesting properties and their multiple applications, PHAs have not taken off as an industrial development. The reason is mainly due to the associated high-production costs, which represent a significant constraint.
View Article and Find Full Text PDFLangmuir
June 2022
Advanced Functional Materials & Nanotechnology Group, Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, C.P. 66628 Apodaca, Nuevo León, Mexico.
Parahydrophobic surfaces (PHSs) composed of arrays of cubic μ-pillars with a double scale of roughness and variable wettability were systematically obtained in one step and a widely accessible stereolithographic Formlabs 3D printer. The wettability control was achieved by combining the geometrical parameters ( = height and = pitch) and the surface modification with fluoroalkyl silane compounds. Homogeneous distribution of F and Si atoms onto the pillars was observed by XPS and SEM-EDAX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!