Hybrid nanocrystal-polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer-nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic-nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946037PMC
http://dx.doi.org/10.1021/nn405978fDOI Listing

Publication Analysis

Top Keywords

cadmium selenide
8
ultrafast charge-
4
charge- energy-transfer
4
energy-transfer dynamics
4
dynamics conjugated
4
conjugated polymer
4
polymer cadmium
4
selenide nanocrystal
4
nanocrystal blends
4
blends hybrid
4

Similar Publications

Novel Dual-Potential Color-Resolved Luminophore Ru(bpy)-Doped CdSe QDs for Bipolar Electrode Electrochemiluminescence Biosensing.

Anal Chem

January 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

The classical electrochemiluminescence (ECL) reagent Ru(bpy) was first doped into CdSe QDs to prepare novel dual-potential color-resolved luminophore Ru-CdSe QDs. Ru-CdSe QDs emitted a strong red ECL signal at a positive potential with coreactant TPrA and a strong green ECL signal at a negative potential with coreactant KSO. As a proof-of-concept application, this work introduced Ru-CdSe QDs into a dual-channel closed bipolar electrode (CBPE) system to construct an ECL biosensor for simultaneous detection of chloramphenicol (CAP) and kanamycin (KAN).

View Article and Find Full Text PDF

The chemical engineering of nanostructures with atomic-scale precision is a fundamental scientific challenge. Cation exchange reactions in nanoplatelets (NPLs) offer an attractive platform for this precision chemistry, as it is relatively simple to carry out, extremely versatile, and allows the production of heterogeneous nanostructures that cannot be produced by any other means. A major hindrance has, however, been the lack of knowledge of the "weak spots" of the platelets where the ionic exchange reaction is initiated to optimally control the process toward directed nanoscale assemblies.

View Article and Find Full Text PDF

The presence of toxic dyes in industrial waste dramatically diminishes the beneficial effects of remediation efforts. To overcome the hazardous impacts of dyes on biodiversity and environment, we integrated polymers into nanoparticles to substantially enhance their functionality and performance. 2 and 4 wt% of chitosan (CS) and 3 wt% of polyacrylic acid (PAA) doped cadmium selenide (CdSe) nanostructures (NSs) were prepared by co-precipitation approach.

View Article and Find Full Text PDF

This study presents a mild, one-pot synthetic approach for the synthesis of multicolor, water soluble, photo luminescent CdS and CdSe quantum dots (QDs). To achieve this goal, cyclic peptides containing cysteine residues are rationally designed and synthesized. Among the peptides tested, those containing two cysteine residues exhibit superior stabilizing properties, ensuring the solubility and long-term stability of the QDs in aqueous solutions for several months.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers successfully performed surface passivation of colloidal semiconductor nanocrystals at room temperature (25 °C), unlike the typical high-temperature methods, using prenucleation-stage ZnSe clusters prepared at 160 °C.
  • This approach enabled the transformation of photoluminescent (PL)-inactive CdSe magic-size clusters (MSCs) into PL-active ones, which produced a sharp photoluminescent signal at 460 nm.
  • The study reveals that the formation of Zn-Se bonds occurs independently of the actual growth of the ZnSe shell and highlights the principle of isodesmic reactions, paving the way for milder surface passivation techniques.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!