The emerging paradigm that MSCs are immune privileged has fostered the use of "off-the-shelf" allogeneic MSC-based therapies in human clinical trials. However, this approach ignores studies in experimental animals wherein transplantation of MSCs across MHC boundaries elicits measurable allo-immune responses. To determine if MSCs are hypo-immunogeneic, we characterized the immune response in rhesus macaques following intracranial administration of allogeneic vs. autologous MSCs. This analysis revealed unambiguous evidence of productive allo-recognition based on expansion of NK, B and T cell subsets in peripheral blood and detection of allo-specific antibodies in animals administered allogeneic but not autologous MSCs. Moreover, the degree of MHC class I and II mismatch between the MSC donor and recipient significantly influenced the magnitude and nature of the allo-immune response. Consistent with these findings, real-time PCR analysis of brain tissue from female recipients administered varying doses of male, allogeneic MSCs revealed a significant inverse correlation between MSC engraftment levels and cell dose. Changes in post-transplant neutrophil and lymphocyte counts also correlated with dose and were predictive of overall MSC engraftment levels. However, secondary antigen challenge failed to elicit a measurable immune response in allogeneic recipients. Finally, extensive behavior testing of animals revealed no main effect of cell dose on motor skills, social development, or temperament. Collectively, these data indicate that allogeneic MSCs are weakly immunogenic when transplanted across MHC boundaries in rhesus macaques and this negatively impacts durable engraftment levels. Therefore the use of unrelated donor MSCs should be carefully evaluated in human patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906169 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087238 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!