Signal transducer and activator of transcription (STAT) 1 is a key player in interferon (IFN) signaling, essential in mediating host defense against viruses and other pathogens. STAT1 levels are tightly regulated and loss- or gain-of-function mutations in mice and men lead to severe diseases. We have generated a doxycycline (dox) -inducible, FLAG-tagged Stat1 expression system in mice lacking endogenous STAT1 (i.e. Stat1(ind) mice). We show that STAT1 expression depends on the time and dose of dox treatment in primary cells and a variety of organs isolated from Stat1(ind) mice. In bone marrow-derived macrophages, a fraction of the amount of STAT1 present in WT cells is sufficient for full expression of IFN-induced genes. Dox-induced STAT1 established protection against virus infections in primary cells and mice. The availability of the Stat1(ind) mouse model will enable an examination of the consequences of variable amounts of STAT1. The model will also permit the study of STAT1 dose-dependent and reversible functions as well as of STAT1's contributions to the development, progression and resolution of disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906053PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086608PLOS

Publication Analysis

Top Keywords

stat1
9
stat1 expression
8
stat1ind mice
8
primary cells
8
model will
8
mice
5
inducible dose-adjustable
4
dose-adjustable time-restricted
4
time-restricted reconstitution
4
reconstitution stat1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!